Skip to main content
Log in

A Review on Recent Trends in Biological Applications of Non-conjugated Polymer Dots

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

With the advancement of zero-dimensional carbon materials, carbon dots (CDs) have received immense attention owing to their exceptional optical properties, tailoring of size, and ease of functionalization. They have wide applications in fluorescent sensing, chemical sensing, bioimaging, photocatalysis, etc. Zero-dimensional polymer nanoparticles are called polymer dots (PDs) and are classified into conjugated and non-conjugated PDs based on their conjugated system. Non-conjugated polymer dots (NCPDs) do not have specific conjugated fluorophore groups, but they have superior chemical stability and water solubility than the conjugated PDs. The carbon core of NCPDs is surrounded by polymer chains containing ample functional groups such as C=O, N=O, and C=N, which are responsible for the luminescent PDs. NCPDs are less toxic, photostable, and biocompatible and are relevant in biological explorations in bioimaging, drug delivery, biosensing, etc. This mini-review provides a systematic overview of the inherent properties and the biological applications of NCPDs. It also emphasises the synergistic impacts on the optical performance of modified PDs and significant future research concerns.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Wu et al., Carbon-nanomaterial‐based flexible batteries for wearable electronics. Adv. Mater. 31(9), 1800716 (2019)

    Google Scholar 

  2. Y. Huang, L. Mei, X. Chen, Q. Wang, Recent developments in food packaging based on nanomaterials. Nanomaterials 8(10), 830 (2018)

    PubMed  PubMed Central  Google Scholar 

  3. U. Chadha et al., Complex nanomaterials in catalysis for chemically significant applications: from synthesis and hydrocarbon processing to renewable energy applications. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/1552334

    Article  Google Scholar 

  4. P. Zhang, Z. Guo, Z. Zhang, H. Fu, J.C. White, I. Lynch, Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture. Small 16(21), 2000705 (2020)

    CAS  Google Scholar 

  5. L.V. Haule, L. Nambela, Sustainable application of nanomaterial for finishing of textile material. Green. Nanomater Ind. Appl. (2022). https://doi.org/10.1016/B978-0-12-823296-5.00011-3

    Article  Google Scholar 

  6. A.P. Johnson, H.V. Gangadharappa, K. Pramod, Graphene nanoribbons: a promising nanomaterial for biomedical applications. J. Control Release 325, 141–162 (2020)

    PubMed  CAS  Google Scholar 

  7. Z. Huang, A. Zhang, Q. Zhang, D. Cui, Nanomaterial-based SERS sensing technology for biomedical application. J. Mater. Chem. B 7(24), 3755–3774 (2019)

    CAS  Google Scholar 

  8. F. Zhao, J. Wu, Y. Ying, Y. She, J. Wang, J. Ping, Carbon nanomaterial-enabled pesticide biosensors: design strategy, biosensing mechanism, and practical application. TrAC Trends Anal. Chem. 106, 62–83 (2018)

    CAS  Google Scholar 

  9. C. Wu, B. Bull, C. Szymanski, K. Christensen, J. McNeill, Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2(11), 2415–2423 (2008). https://doi.org/10.1021/nn800590n

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. L. Guo, J. Ge, P. Wang, Polymer dots as effective phototheranostic agents. Photochem. Photobiol. 94(5), 916–934 (2018)

    PubMed  CAS  Google Scholar 

  11. J. Yu, Y. Rong, C.-T. Kuo, X.-H. Zhou, D.T. Chiu, Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine. Anal. Chem. 89(1), 42–56 (2017)

    PubMed  CAS  Google Scholar 

  12. Y. Zhang, F. Fang, L. Li, J. Zhang, Self-assembled organic nanomaterials for drug delivery, bioimaging, and cancer therapy. ACS Biomater. Sci. Eng. 6(9), 4816–4833 (2020)

    PubMed  CAS  Google Scholar 

  13. G. Wang, A. Morrin, M. Li, N. Liu, X. Luo, Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J. Mater. Chem. B 6(25), 4173–4190 (2018)

    PubMed  CAS  Google Scholar 

  14. M. Mahmoudpour, M. Torbati, M.-M. Mousavi, M. de la Guardia, J.E.N. Dolatabadi, Nanomaterial-based molecularly imprinted polymers for pesticides detection: recent trends and future prospects. TrAC Trends Anal. Chem. 129, 115943 (2020)

    CAS  Google Scholar 

  15. H.K.S. Yadav, A.A. Almokdad, I.M. Sumia, M.S. Debe, Polymer-based nanomaterials for drug-delivery carriers, in Nanocarriers for drug delivery. ed. by S. Shyam, Mohapatra et al. (Elsevier, Amsterdam, 2019), pp.531–556

    Google Scholar 

  16. S. Shakeri et al., Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics. Biomedicines 8(1), 13 (2020)

    PubMed  PubMed Central  CAS  Google Scholar 

  17. C. Wang et al., Bi-functional fluorescent polymer dots: a one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+. J. Mater. Chem. C 5(2), 434–443 (2017)

    CAS  Google Scholar 

  18. S. Zhu, Y. Song, J. Shao, X. Zhao, B. Yang, Non-conjugated polymer dots with crosslink‐enhanced emission in the absence of fluorophore units. Angew. Chem. Int. Ed. 54(49), 14626–14637 (2015)

    CAS  Google Scholar 

  19. Y. Zhang, S. Zhou, K.C. Chong, S. Wang, B. Liu, Near-infrared light-induced shape memory, self-healable and anti-bacterial elastomers prepared by incorporation of a diketopyrrolopyrrole-based conjugated polymer. Mater. Chem. Front. 3(5), 836–841 (2019)

    CAS  Google Scholar 

  20. L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, S. Wang, Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 42(16), 6620–6633 (2013)

    PubMed  CAS  Google Scholar 

  21. C. Wu, C. Szymanski, Z. Cain, J. McNeill, Conjugated polymer dots for multiphoton fluorescence imaging. J. Am. Chem. Soc. 129(43), 12904–12905 (2007)

    PubMed  PubMed Central  CAS  Google Scholar 

  22. K. Chang et al., Conjugated polymer dots for ultra-stable full‐color fluorescence patterning. Small 10(21), 4270–4275 (2014)

    PubMed  CAS  Google Scholar 

  23. C. Wu, C. Szymanski, J. McNeill, Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 22(7), 2956–2960 (2006)

    PubMed  CAS  Google Scholar 

  24. J. Sun, N. Chen, R. Zhang, Q. Wang, Q. Zhang, F. Gao, One-pot synthesis of conjugated polymer dots with ultrasmall size below 10 nm through Schiff-base chemistry and their bioapplications in monitoring lysosomal pH. Sens. Actuators B Chem. 339, 129897 (2021)

    CAS  Google Scholar 

  25. C. Wu et al., Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. 123(15), 3492–3496 (2011)

    Google Scholar 

  26. S. Zhu et al., Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon N. Y. 77, 462–472 (2014)

    CAS  Google Scholar 

  27. S. Zhu et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. 125(14), 4045–4049 (2013)

    Google Scholar 

  28. S. Zhu et al., A general route to make non-conjugated linear polymers luminescent. Chem. Commun. 48(88), 10889–10891 (2012)

    CAS  Google Scholar 

  29. Y. Song et al., Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 6(9), 4676–4682 (2014)

    PubMed  CAS  Google Scholar 

  30. C. Wang, Z. Xu, H. Cheng, H. Lin, M.G. Humphrey, C. Zhang, A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon N. Y. 82, 87–95 (2015)

    CAS  Google Scholar 

  31. S. Zhu et al., The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem. Commun. 50(89), 13845–13848 (2014)

    CAS  Google Scholar 

  32. A. Jaiswal, S.S. Ghosh, A. Chattopadhyay, One step synthesis of C-dots by microwave mediated caramelization of poly (ethylene glycol). Chem. Commun. 48(3), 407–409 (2012)

    CAS  Google Scholar 

  33. R.-J. Fan, Q. Sun, L. Zhang, Y. Zhang, A.-H. Lu, Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon N. Y. 71, 87–93 (2014)

    CAS  Google Scholar 

  34. H. Li et al., One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon N. Y. 49(2), 605–609 (2011)

    CAS  Google Scholar 

  35. M. Wu et al., Highly efficient and non-doped red conjugated polymer dot for photostable cell imaging. Chin. Chem. Lett. 34(6), 107867 (2023)

    CAS  Google Scholar 

  36. B.-J. Liu et al., Unleashing non-conjugated polymers as charge relay mediators. Chem. Sci. 13(2), 497–509 (2022)

    PubMed  Google Scholar 

  37. X. Sun et al., Microwave-assisted ultrafast and facile synthesis of fluorescent carbon nanoparticles from a single precursor: Preparation, characterization and their application for the highly selective detection of explosive picric acid. J. Mater. Chem. A 4(11), 4161–4171 (2016). https://doi.org/10.1039/c5ta10027e

    Article  CAS  Google Scholar 

  38. F. Zhang, X. Feng, Y. Zhang, L. Yan, Y. Yang, X. Liu, Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs. Nanoscale 8(16), 8618–8632 (2016)

    PubMed  CAS  Google Scholar 

  39. S. Tao, S. Zhu, T. Feng, C. Xia, Y. Song, B. Yang, The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: a review. Mater. Today Chem. 6, 13–25 (2017)

    Google Scholar 

  40. Z. Qiao, Q. Huo, M. Chi, G.M. Veith, A.J. Binder, S. Dai, A ‘Ship-In‐A‐Bottle’ approach to synthesis of polymer Dots@ silica or polymer Dots@ carbon core‐shell nanospheres. Adv. Mater. 24(45), 6017–6021 (2012)

    PubMed  CAS  Google Scholar 

  41. C.X. Guo, J. Xie, B. Wang, X. Zheng, H.B. Yang, C.M. Li, A new class of fluorescent-dots: long luminescent lifetime bio-dots self-assembled from DNA at low temperatures. Sci. Rep. 3(1), 1–6 (2013)

    CAS  Google Scholar 

  42. J. Li et al., A reduction and pH dual-sensitive polymeric vector for long‐circulating and tumor‐targeted siRNA delivery. Adv. Mater. 26(48), 8217–8224 (2014)

    PubMed  CAS  Google Scholar 

  43. S. Xie et al., Organic–Inorganic interface-induced multi‐fluorescence of MgO nanocrystal clusters and their applications in cellular imaging. Chem. Eur. J. 20(18), 5244–5252 (2014)

    PubMed  CAS  Google Scholar 

  44. N. Joseph, Green synthesized fluorescent nano-carbon derived from Indigofera tinctora (L.) Leaf Extract for sensing of Pb2+ ions. ECS Trans. 107(1), 15255 (2022)

    Google Scholar 

  45. J. Roughgarden, S. Gaines, H. Possingham, Recruitment dynamics in complex life cycles. Science 241(4872), 1460–1466 (1988)

    PubMed  CAS  Google Scholar 

  46. Y. Zhu, Z. Li, M. Chen, H.M. Cooper, G.Q.M. Lu, Z.P. Xu, One-pot preparation of highly fluorescent cadmium telluride/cadmium sulfide quantum dots under neutral-pH condition for biological applications. J. Colloid Interface Sci. 390(1), 3–10 (2013)

    PubMed  CAS  Google Scholar 

  47. J. Yang et al., Development of aliphatic biodegradable photoluminescent polymers. Proc. Natl. Acad. Sci. 106(25), 10086–10091 (2009)

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Y. Sun et al., Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy. Sci. Rep. 3(1), 1–6 (2013)

    Google Scholar 

  49. A.B. Mabire, M.P. Robin, W.D. Quan, H. Willcock, V.G. Stavros, R.K. O’Reilly, Aminomaleimide fluorophores: a simple functional group with bright, solvent dependent emission. Chem. Commun. (Camb) 51(47), 9733–9736 (2015). https://doi.org/10.1039/c5cc02908b

    Article  PubMed  CAS  Google Scholar 

  50. X. Wang et al., Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chemie Int. Ed. 49(31), 5310–5314 (2010)

    CAS  Google Scholar 

  51. H. Peng, J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21, 5563–5565 (2009). https://doi.org/10.1021/cm901593y

    Article  CAS  Google Scholar 

  52. Y.-P. Sun et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128(24), 7756–7757 (2006)

    PubMed  CAS  Google Scholar 

  53. C. Xia et al., Hydrothermal addition polymerization for ultrahigh-yield carbonized polymer dots with room temperature phosphorescence via nanocomposite. Chem. Eur. J. 24(44), 11303–11308 (2018)

    PubMed  CAS  Google Scholar 

  54. Y. Song et al., Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 3(23), 5976–5984 (2015). https://doi.org/10.1039/c5tc00813a

    Article  CAS  Google Scholar 

  55. S.G. Liu et al., Water-soluble nonconjugated polymer nanoparticles with strong fluorescence emission for selective and sensitive detection of nitro-explosive picric acid in aqueous medium. ACS Appl. Mater. Interfaces 8(33), 21700–21709 (2016)

    PubMed  CAS  Google Scholar 

  56. M. Zheng, Y. Li, S. Liu, W. Wang, Z. Xie, X. Jing, One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl. Mater. Interfaces 8(36), 23533–23541 (2016)

    PubMed  CAS  Google Scholar 

  57. Y. Chen, Y. Zhang, T. Lyu, Y. Wang, X. Yang, X. Wu, A facile strategy for the synthesis of water-soluble fluorescent nonconjugated polymer dots and their application in tetracycline detection. J. Mater. Chem. C 7(30), 9241–9247 (2019)

    CAS  Google Scholar 

  58. Y. Tang, X. Zhou, K. Xu, X. Dong, One-pot synthesis of fluorescent non-conjugated polymer dots for Fe3+ detection and temperature sensing. Spectrochim. Acta A Mol. Biomol. Spectrosc. 240, 118626 (2020)

    PubMed  CAS  Google Scholar 

  59. H. Zhang, X. Dong, J. Wang, R. Guan, D. Cao, Q. Chen, Fluorescence emission of polyethylenimine-derived polymer dots and its application to detect copper and hypochlorite ions. ACS Appl. Mater. Interfaces 11(35), 32489–32499 (2019)

    PubMed  CAS  Google Scholar 

  60. S. Tao, Y. Song, S. Zhu, J. Shao, B. Yang, A new type of polymer carbon dots with high quantum yield: from synthesis to investigation on fluorescence mechanism. Polym. (Guildf) 116, 472–478 (2017)

    CAS  Google Scholar 

  61. D. Luo, S.G. Liu, N.B. Li, H.Q. Luo, Water-soluble polymer dots formed from polyethylenimine and glutathione as a fluorescent probe for mercury (II). Microchim. Acta 185(6), 1–8 (2018)

    Google Scholar 

  62. Y.Z. Fan et al., Multifunctional binding strategy on nonconjugated polymer nanoparticles for ratiometric detection and effective removal of mercury ions. Environ. Sci. Technol. 54(16), 10270–10278 (2020)

    PubMed  CAS  Google Scholar 

  63. B. Sun et al., Fluorescent non-conjugated polymer dots for targeted cell imaging. Nanoscale 8(18), 9837–9841 (2016)

    PubMed  CAS  Google Scholar 

  64. D. Tong et al., Non-conjugated polyurethane polymer dots based on crosslink enhanced emission (CEE) and application in Fe3+ sensing. RSC Adv. 6(99), 97137–97141 (2016)

    CAS  Google Scholar 

  65. S. Yang, L. Wang, L. Zuo, C. Zhao, H. Li, L. Ding, Non-conjugated polymer carbon dots for fluorometric determination of metronidazole. Microchim. Acta 186(9), 1–9 (2019)

    Google Scholar 

  66. J. Liu, F. Wu, A. Xie, C. Liu, H. Bao, Preparation of nonconjugated fluorescent polymer nanoparticles for use as a fluorescent probe for detection of 2, 4, 6-trinitrophenol. Anal. Bioanal. Chem. 412(5), 1235–1242 (2020)

    PubMed  CAS  Google Scholar 

  67. D.S. Bhattacharya, A. Bapat, D. Svechkarev, A.M. Mohs, Water-soluble blue fluorescent nonconjugated polymer dots from hyaluronic acid and hydrophobic amino acids. ACS Omega 6(28), 17890–17901 (2021)

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Y. Fan, J. Yao, M. Huang, C. Linghu, J. Guo, Y. Li, Non-conjugated polymer dots for fluorometric and colorimetric dual-mode detection of quercetin. Food Chem. 359, 129962 (2021)

    PubMed  CAS  Google Scholar 

  69. C.-H. Li, W.-F. Wang, N. Stanislas, J.-L. Yang, Facile preparation of fluorescent water-soluble non-conjugated polymer dots and fabricating an acetylcholinesterase biosensor. RSC Adv. 12(13), 7911–7921 (2022)

    PubMed  PubMed Central  CAS  Google Scholar 

  70. P. Jia et al., Innovative ratiometric optical strategy: nonconjugated polymer dots based fluorescence-scattering dual signal output for sensing mercury ions. Food Chem. 374, 131771 (2022)

    PubMed  CAS  Google Scholar 

  71. C. Zhang et al., Water-soluble non-conjugated polymer dots with strong green fluorescence for sensitive detection of organophosphate pesticides. Anal. Chim. Acta 1206, 339792 (2022)

    PubMed  CAS  Google Scholar 

  72. A.N. Alias, Z.M. Zabidi, A.M.M. Ali, M.K. Harun, M.Z.A. Yahya, Optical characterization and properties of polymeric materials for optoelectronic and photonic applications. Int. J. Appl. Sci. Technol. 3, 5 (2013)

    Google Scholar 

  73. B.E. Saji, M. Saji, N. Joseph, M. Balachandran, Nitrogen-doped carbonized polymer dots (CPDs) and their optical and antibacterial characteristics: a short review. Biointerface Res. Appl. Chem. (2021). https://doi.org/10.33263/BRIAC124.46624674

    Article  Google Scholar 

  74. M. Saji, B. Elsa Saji, N. Joseph, A.A. Mathew, E.C. Daniel, M. Balachandran, Investigation of fluorescence enhancement and antibacterial properties of nitrogen-doped carbonized polymer nanomaterials (N-CPNs). Int. J. Polym. Anal. Charact. (2022). https://doi.org/10.1080/1023666X.2022.2110122

    Article  Google Scholar 

  75. N. Joseph, B. Manoj, Nanomaterials-based chemical sensing. Nanotechnol. Electron. Appl. (2022). https://doi.org/10.1007/978-981-16-6022-1_7

    Article  Google Scholar 

  76. J.E. Abraham, M. Balachandran, Fluorescent mechanism in zero-dimensional carbon nanomaterials: a review. J. Fluoresc. 32, 887–906 (2022)

    PubMed  Google Scholar 

  77. A.A. Mathew, M. Varghese, M. Balachandran, Biosafety and toxicity evaluation of carbon nanomaterials carbon nanostructures in biomedical applications (Springer, Berlin, 2023), pp.363–398

    Google Scholar 

  78. W. Li et al., Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew. Chem. Int. Ed. 52(31), 8151–8155 (2013)

    CAS  Google Scholar 

  79. X. Guan et al., AIE-Active fluorescent nonconjugated polymer dots for dual-alternating-color live cell imaging. Ind. Eng. Chem. Res. 57(44), 14889–14898 (2018)

    CAS  Google Scholar 

  80. C. Tan et al., Sulfuric acid assisted preparation of red-emitting carbonized polymer dots and the application of bio-imaging. Nanoscale Res. Lett. 13(1), 1–6 (2018)

    Google Scholar 

  81. C. Wu, D.T. Chiu, Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 52(11), 3086–3109 (2013). https://doi.org/10.1002/anie.201205133

    Article  CAS  Google Scholar 

  82. L. Vallan, E.P. Urriolabeitia, A.M. Benito, W.K. Maser, A versatile room-temperature method for the preparation of customized fluorescent non-conjugated polymer dots. Polym. (Guildf) 177, 97–101 (2019)

    CAS  Google Scholar 

  83. S.G. Mucha, L. Firlej, J.-L. Bantignies, A. Żak, M. Samoć, K. Matczyszyn, Acetone-derived luminescent polymer dots: a facile and low-cost synthesis leads to remarkable photophysical properties. RSC Adv. 10(63), 38437–38445 (2020)

    PubMed  PubMed Central  CAS  Google Scholar 

  84. A.N. Mohan, S. Panicker, Facile synthesis of graphene-tin oxide nanocomposite derived from agricultural waste for enhanced antibacterial activity against Pseudomonas aeruginosa. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  85. M. Varghese, M. Balachandran, Antibacterial efficiency of carbon dots against Gram-positive and Gram-negative bacteria: a review. J. Environ. Chem. Eng. 9(6), 106821 (2021)

    CAS  Google Scholar 

  86. J. Li et al., Oxygen vacancies-rich heterojunction of Ti3C2/BiOBr for photo‐excited antibacterial textiles. Small 18(5), 2104448 (2022)

    CAS  Google Scholar 

  87. J. Koehbach, D.J. Craik, The vast structural diversity of antimicrobial peptides. Trends Pharmacol. Sci. 40(7), 517–528 (2019)

    PubMed  CAS  Google Scholar 

  88. E. Tacconelli, M.D. Pezzani, Public health burden of antimicrobial resistance in Europe. Lancet Infect. Dis. 19(1), 4–6 (2019)

    PubMed  Google Scholar 

  89. H.-Y. Lin et al., Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chem. Eng. J. 411, 128469 (2021)

    CAS  Google Scholar 

  90. Z. Xu et al., Mechanistic studies on the antibacterial behavior of Ag nanoparticles decorated with carbon dots having different oxidation degrees. Environ. Sci. Nano 6(4), 1168–1179 (2019)

    CAS  Google Scholar 

  91. Y. Zhang et al., The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. J. Funct. Foods 38, 273–279 (2017)

    CAS  Google Scholar 

  92. Q. Cheng, X. Guo, X. Hao, Z. Shi, S. Zhu, Z. Cui, Fabrication of robust antibacterial coatings based on an organic–inorganic hybrid system. ACS Appl. Mater. Interfaces 11(45), 42607–42615 (2019)

    PubMed  CAS  Google Scholar 

  93. Y. Xi, T. Song, S. Tang, N. Wang, J. Du, Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities. Biomacromolecules 17(12), 3922–3930 (2016)

    PubMed  CAS  Google Scholar 

  94. Z. Zhu et al., Antibacterial activity of graphdiyne and graphdiyne oxide. Small 16(34), 2001440 (2020)

    CAS  Google Scholar 

  95. A.N. Mohan, B. Manoj, Surface modified graphene/SnO2 nanocomposite from carbon black as an efficient disinfectant against Pseudomonas aeruginosa. Mater. Chem. Phys. 232, 137–144 (2019)

    CAS  Google Scholar 

  96. A.A. Mathew, M. Antony, R. Thomas, S. Sarojini, M. Balachandran, Fluorescent PVDF dots from synthesis to biocidal activity. Polym. Bull. 80, 1–18 (2022)

    Google Scholar 

  97. M.-Y. Xia et al., Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J. Control Release 307, 16–31 (2019)

    PubMed  CAS  Google Scholar 

  98. Q. Li et al., An NIR-II light responsive antibacterial gelation for repetitious photothermal/thermodynamic synergistic therapy. Chem. Eng. J. 407, 127200 (2021)

    CAS  Google Scholar 

  99. W.-N. Wang et al., Bi2S3 coated au nanorods for enhanced photodynamic and photothermal antibacterial activities under NIR light. Chem. Eng. J. 397, 125488 (2020)

    CAS  Google Scholar 

  100. A.N. Mohan, B. Manoj, Biowaste derived graphene quantum dots interlaced with SnO2 nanoparticles–a dynamic disinfection agent against Pseudomonas aeruginosa. New. J. Chem. 43(34), 13681–13689 (2019)

    CAS  Google Scholar 

  101. I. Aksoy, H. Kucukkececi, F. Sevgi, O. Metin, I. Hatay Patir, Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Appl. Mater. Interfaces 12(24), 26822–26831 (2020)

    PubMed  CAS  Google Scholar 

  102. C. Cao et al., Mesoporous silica supported silver–bismuth nanoparticles as photothermal agents for skin infection synergistic antibacterial therapy. Small 16(24), 2000436 (2020)

    CAS  Google Scholar 

  103. X.-M. Wang, L. Huang, Y.-J. Wang, L. Xuan, W.-W. Li, L.-J. Tian, Highly efficient near-infrared photothermal antibacterial membrane with incorporated biogenic CuSe nanoparticles. Chem. Eng. J. 405, 126711 (2021)

    CAS  Google Scholar 

  104. X. Wang, Y. Lu, K. Hua, D. Yang, Y. Yang, Iodine-doped carbon dots with inherent peroxidase catalytic activity for photocatalytic antibacterial and wound disinfection. Anal. Bioanal. Chem. 413(5), 1373–1382 (2021)

    PubMed  CAS  Google Scholar 

  105. J. Zhang et al., Carbon dots-decorated Na2W4O13 composite with WO3 for highly efficient photocatalytic antibacterial activity. J. Hazard. Mater. 359, 1–8 (2018)

    PubMed  CAS  Google Scholar 

  106. A. Nakal-Chidiac et al., Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties. Carbohydr. Polym. 250, 116973 (2020)

    PubMed  CAS  Google Scholar 

  107. W. Ma et al., Ultra-efficient antibacterial system based on photodynamic therapy and CO gas therapy for synergistic antibacterial and ablation biofilms. ACS Appl. Mater. Interfaces 12(20), 22479–22491 (2020)

    PubMed  CAS  Google Scholar 

  108. F. Wei, X. Cui, Z. Wang, C. Dong, J. Li, X. Han, Recoverable peroxidase-like Fe3O4@ MoS2-Ag nanozyme with enhanced antibacterial ability. Chem. Eng. J. 408, 127240 (2021)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Aleena Ann Mathew is thankful to DST for the fellowship grant DST/INSPIRE/03/2021/ 000566, and Manoj Balachandran is grateful to DST for his major research fund DST/TMD/CERI/RES/ 2020/37(G) and SR/FST/PS-I/2022/208(C).

Funding

This research work was supported by the Department of Science and Technology (DST) under the fellowship Grant Number: DST/INSPIRE/03/2021/000566 and major research project Grant Number: DST/TMD/CERI/RES/2020/37(G) and SR/FST/PS-I/2022/208(C).

Author information

Authors and Affiliations

Authors

Contributions

AAM: Conceptualization, writing—original draft, data curation and visualization. MB: Resources, validation, supervision, writing—review & editing and project administration.

Corresponding author

Correspondence to Manoj Balachandran.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, A.A., Balachandran, M. A Review on Recent Trends in Biological Applications of Non-conjugated Polymer Dots. J Inorg Organomet Polym 33, 3340–3354 (2023). https://doi.org/10.1007/s10904-023-02797-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02797-4

Keywords

Navigation