Skip to main content
Log in

Assessment of Properties, Photocatalytic Activity, Cytotoxicity, and Antibacterial Activity of (Cu, Cr) Dual-Doped ZnO Nanoparticles

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Co-precipitation, a minimal technique, was used successfully to create a novel (Cr, Cu) dual-doped ZnO nanoparticles (NPs). X-ray diffraction (XRD), energy dispersion X-ray (EDX) analysis, scanning electron microscopes (SEM), and UV–visible absorption spectra had been used to characterize the produced nanoparticle. According to the XRD pattern, the produced NPs have a hexagonal wurtzite structure with a high phase purity. The substitution of Cr increased optical absorption and induced new absorption peaks in the visible regions that correspond to the transitions from 4A2(4F) to CB and 4A2(4F) to 4T1(4F). Absorption of photons in the visible region led to an increase in the photo-generated electron–hole pairs and hence RO-species which are responsible for photocatalytic activity. Therefore, the (Cu, Cr) dual doped ZnO NPs had unique photocatalytic activity under sunlight irradiation. MTT assay was employed to analyse the in-vitro cytotoxicity of Cr-doped Zn0.98Cu0.02O NPs on human normal PBMC. In which, the toxicity is enhanced by a proliferation in Cr concentration and has very small amounts at low concentrations and significantly at high concentrations. The antibacterial characteristics of the synthesized NPs were examined against the bacterial strains P. putida and B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C.J. Chang, T.L. Yang, Y.C. Weng, Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity. J. Solid State Chem. 214, 101–107 (2014). https://doi.org/10.1016/J.JSSC.2013.09.039

    Article  CAS  Google Scholar 

  2. A. Ayub, A. Irfan, Z.A. Raza, M. Abbas, A. Muhammad, K. Ahmad, A. Munwar, Development of poly(1-vinylimidazole)-chitosan composite sorbent under microwave irradiation for enhanced uptake of Cd(II) ions from aqueous media. Polym. Bull. 79, 807–827 (2022). https://doi.org/10.1007/S00289-020-03523-7/METRICS

    Article  CAS  Google Scholar 

  3. C. Lops, A. Ancona, K. Di Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hérnandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B. 243, 629–640 (2019). https://doi.org/10.1016/J.APCATB.2018.10.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int. 91, 94–103 (2016). https://doi.org/10.1016/J.ENVINT.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  5. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review. J. Environ. Manage. 92, 2304–2347 (2011). https://doi.org/10.1016/J.JENVMAN.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  6. B. Pare, P. Singh, S.B. Jonnalgadda, Artificial light assisted photocatalytic degradation of lissamine fast yellow dye in ZnO suspension in a slurry batch reactor, IJC-A Vol.48A(10) [October 2009]. 48 (2009) 1364–1369. http://nopr.niscpr.res.in/handle/123456789/6122. Accessed 11 April 2023

  7. B. Pare, P. Singh, S.B. Jonnalgadda, Degradation and mineralization of victoria blue B dye in a slurry photoreactor using advanced oxidation process, JSIR Vol.68(08) [August 2009]. 68 (2009) 724–729. http://nopr.niscpr.res.in/handle/123456789/5300. Accessed 11 April 2023

  8. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO 2 based photocatalysts: a comparative overview. RSC Adv. 4, 37003–37026 (2014). https://doi.org/10.1039/C4RA06658H

    Article  CAS  Google Scholar 

  9. D. Li, W. Shi, Recent developments in visible-light photocatalytic degradation of antibiotics. Chin. J. Catal. 37, 792–799 (2016). https://doi.org/10.1016/S1872-2067(15)61054-3

    Article  CAS  Google Scholar 

  10. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ. Manage. 92, 311–330 (2011). https://doi.org/10.1016/J.JENVMAN.2010.08.028

    Article  CAS  PubMed  Google Scholar 

  11. A. Bahadur, S. Iqbal, H.O. Alsaab, N.S. Awwad, H.A. Ibrahium, Designing a novel visible-light-driven heterostructure Ni–ZnO/S-g-C 3 N 4 photocatalyst for coloured pollutant degradation. RSC Adv. 11, 36518–36527 (2021). https://doi.org/10.1039/D0RA09390D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Irie, Y. Watanabe, K. Hashimoto, Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772–773 (2003). https://doi.org/10.1246/CL.2003.772

    Article  CAS  Google Scholar 

  13. M. Mishra, D.M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A Gen. 498, 126–141 (2015). https://doi.org/10.1016/J.APCATA.2015.03.023

    Article  CAS  Google Scholar 

  14. K. Lai, W. Wei, Y. Dai, Z. Ruiqin, B. Huang, DFT calculations on structural and electronic properties of Bi 2MO 6 (M = Cr, Mo, W). Rare Met. 30, 166–172 (2011). https://doi.org/10.1007/S12598-011-0262-0/METRICS

    Article  CAS  Google Scholar 

  15. M. Ashokkumar, C. Muthusamy, Role of ionic radii and electronegativity of co-dopants (Co, Ni and Cr) on properties of Cu doped ZnO and evaluation of In-vitro cytotoxicity. Surf. and Interfaces 30, 101968 (2022). https://doi.org/10.1016/j.surfin.2022.101968

    Article  CAS  Google Scholar 

  16. C. Muthusamy, M. Ashokkumar, A. Boopathyraja, V.V. Priya, Enhanced ferro magnetism of (Cu, Fe/Mn) dual doped ZnO nanoparticles and assessment of in-vitro cytotoxicity and antimicrobial activity for magnetically guided immunotherapy and hyperthermia applications. Vacuum 205, 111400 (2022). https://doi.org/10.1016/j.vacuum.2022.111400

    Article  CAS  Google Scholar 

  17. M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A.C. De Melo, A.A.W. Hechenleitner, E.A.G. Pineda, Fe-doped ZnO nanoparticles: synthesis by a modified sol–gel method and characterization. Mater. Lett. 159, 84–86 (2015). https://doi.org/10.1016/J.MATLET.2015.06.023

    Article  CAS  Google Scholar 

  18. M. Ashokkumar, S. Muthukumaran, Tuning of energy gap, microstructure, optical and structural properties of Cr doped Zn096Cu004O nanoparticles. Powder Technol. 258, 157–164 (2014). https://doi.org/10.1016/j.powtec.2014.03.013

    Article  CAS  Google Scholar 

  19. R. Kabilan, M. Ashokkumar, Annealing temperature enhanced visible absorption and magnetic properties of (Cu, Cr ) co-doped ZnO diluted magnetic semiconductors. J. Mol. Struct. 1249, 131536 (2022). https://doi.org/10.1016/j.molstruc.2021.131536

    Article  CAS  Google Scholar 

  20. Z. Zhao, X. Zhang, G. Zhang, Z. Liu, D. Qu, X. Miao, P. Feng, Z. Sun, Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 8, 4061–4071 (2015). https://doi.org/10.1007/S12274-015-0917-5/METRICS

    Article  CAS  Google Scholar 

  21. J. Bansal, R. Tabassum, S.K. Swami, S. Bishnoi, P. Vashishtha, G. Gupta, S.N. Sharma, A.K. Hafiz, Performance analysis of anomalous photocatalytic activity of Cr-doped TiO2 nanoparticles [Cr(x)TiO2(1–x)]. Appl. Phys. A Mater. Sci. Process. 126, 1–10 (2020). https://doi.org/10.1007/S00339-020-03536-Z/METRICS

    Article  Google Scholar 

  22. S. Suwanboon, T. Ratana, T. Ratana, Effects of Al and Mn Dopant on Structural and Optical Properties of ZnO Thin Film Prepared by Sol–Gel Route, Walailak Journal of Science and Technology (WJST). 4, 111–121 (2011). https://wjst.wu.ac.th/index.php/wjst/article/view/129. Accessed 11 April 2023

  23. S. Singh, E. Senthil Kumar, M.S. Ramachandra Rao, Microstructural, optical and electrical properties of Cr-doped ZnO. Scr. Mater. 58, 866–869 (2008). https://doi.org/10.1016/J.SCRIPTAMAT.2008.01.008

    Article  CAS  Google Scholar 

  24. M. Ashokkumar, S. Muthukumaran, Size dependent structural and optical properties of Cd0.9Zn0.1S thin films. Phys. Procedia. 49, 131–138 (2013). https://doi.org/10.1016/j.phpro.2013.10.020

    Article  CAS  Google Scholar 

  25. T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B. 46, 15578 (1992). https://doi.org/10.1103/PhysRevB.46.15578

    Article  CAS  Google Scholar 

  26. S. Salam, M. Islam, A. Akram, Sol–gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells. Thin Solid Films 529, 242–247 (2013). https://doi.org/10.1016/J.TSF.2012.10.079

    Article  CAS  Google Scholar 

  27. A. Alnehia, A.H. Al-Hammadi, A. Al-Sharabi, H. Alnahari, Optical, structural and morphological properties of ZnO and Fe+3 doped ZnO-NPs prepared by Foeniculum vulgare extract as capping agent for optoelectronic applications. Inorg. Chem. Commun. 143, 109699 (2022). https://doi.org/10.1016/J.INOCHE.2022.109699

    Article  CAS  Google Scholar 

  28. S. Muthu Kumaran, M. Ashok Kumar, Size dependent structural, optical and morphological properties of ZnS: Cu thin films. J. Mater. Sci.: Mater. Electron. 23, 811–815 (2012). https://doi.org/10.1007/s10854-011-0497-4

    Article  CAS  Google Scholar 

  29. I. Devadoss, S. Muthukumaran, M. Ashokkumar, Structural and optical properties of Cd1−xZnxS (0 ≤ x ≤ 0.3) nanoparticles. J. Mater. Sci.: Mater. Electron. 25, 3308–3317 (2014). https://doi.org/10.1007/s10854-014-2019-7

    Article  CAS  Google Scholar 

  30. B. Zhu, H. Cheng, J. Ma, Y. Kong, S. Komarneni, Efficient degradation of rhodamine B by magnetically separable ZnS–ZnFe2O4 composite with the synergistic effect from persulfate. Chemosphere (2019). https://doi.org/10.1016/j.chemosphere.2019.124547

    Article  PubMed  Google Scholar 

  31. G. Murugadoss, V. Ramasamy, Structural and optical study of mixed structure of ZnO(hexagonal)/ZnS(cubic) nanocomposites. Spectrochim. Acta A Mol. Biomol. Spectrosc. 93, 290–294 (2012). https://doi.org/10.1016/j.saa.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  32. U. Coleto, R.A.C. Amoresi, C.A.M. Pereira, B.W. Schmidt, I.M. Iani, A.Z. Simões, E.S. Monteiro, E. Longo, M.A. Zaghete, L.A. Perazolli, Correlation of photocatalytic activity and defects generated in Ca2+-based heterojunctions. SN Appl. Sci. 2, 1–14 (2020). https://doi.org/10.1007/S42452-020-03662-6/TABLES/6

    Article  Google Scholar 

  33. N. Mediouni, C. Guillard, F. Dappozze, L. Khrouz, S. Parola, C. Colbeau-Justin, A.B.H. Amara, H. Ben Rhaiem, N. Jaffrezic-Renault, P. Namour, Impact of structural defects on the photocatalytic properties of ZnO. J. Hazard. Mater. Adv. 6, 100081 (2022). https://doi.org/10.1016/J.HAZADV.2022.100081

    Article  CAS  Google Scholar 

  34. F. Soleimani, A. Nezamzadeh-Ejhieh, Study of the photocatalytic activity of CdS–ZnS nano-composite in the photodegradation of rifampin in aqueous solution. J. Market. Res. 9, 16237–16251 (2020). https://doi.org/10.1016/j.jmrt.2020.11.091

    Article  CAS  Google Scholar 

  35. W. Liu, T. He, Y. Wang, G. Ning, Z. Xu, X. Chen, X. Hu, Y. Wu, Y. Zhao, Synergistic adsorption-photocatalytic degradation effect and norfloxacin mechanism of ZnO/ZnS@BC under UV-light irradiation. Sci. Rep. 10, 11903 (2020). https://doi.org/10.1038/s41598-020-68517-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A.A. Selim, A. Al-Sunaidi, N. Tabet, Effect of the surface texture and crystallinity of ZnO nanoparticles on their toxicity. Mater. Sci. Eng. C 32, 2356–2360 (2012). https://doi.org/10.1016/J.MSEC.2012.07.007

    Article  CAS  Google Scholar 

  37. I.L. Hsiao, Y.J. Huang, Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci. Total Environ. 409, 1219–1228 (2011). https://doi.org/10.1016/J.SCITOTENV.2010.12.033

    Article  CAS  PubMed  Google Scholar 

  38. G. Fu, P.S. Vary, C.T. Lin, Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 109, 8889–8898 (2005). https://doi.org/10.1021/JP0502196

    Article  CAS  PubMed  Google Scholar 

  39. N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9, 35004–35011 (2008). https://doi.org/10.1088/1468-6996/9/3/035004

    Article  CAS  Google Scholar 

  40. S. Vijayakumar, J. Chen, V. Kalaiselvi, K. Tungare, M. Bhori, Z.I. González-Sánchez, E.F. Durán-Lara, Marine polysaccharide laminarin embedded ZnO nanoparticles and their based chitosan capped ZnO nanocomposites: Synthesis, characterization and in vitro and in vivo toxicity assessment. Environ. Res. 213, 113655 (2022). https://doi.org/10.1016/J.ENVRES.2022.113655

    Article  CAS  PubMed  Google Scholar 

  41. M. Salehipour, S. Nikpour, S. Rezaei, S. Mohammadi, M. Rezaei, D. Ilbeygi, A. Hosseini-Chegeni, M. Mogharabi-Manzari, Safety of metal–organic framework nanoparticles for biomedical applications: an in vitro toxicity assessment. Inorg. Chem. Commun. 152, 110655 (2023). https://doi.org/10.1016/J.INOCHE.2023.110655

    Article  CAS  Google Scholar 

  42. V.V. Shinde, D.S. Dalavi, S.S. Mali, C.K. Hong, J.H. Kim, P.S. Patil, Surfactant free microwave assisted synthesis of ZnO microspheres: study of their antibacterial activity. Appl. Surf. Sci. 307, 495–502 (2014). https://doi.org/10.1016/J.APSUSC.2014.04.064

    Article  CAS  Google Scholar 

  43. A. Hassen, N. Saidi, M. Cherif, A. Boudabous, Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresour. Technol. 65, 73–82 (1998). https://doi.org/10.1016/S0960-8524(98)00011-X

    Article  CAS  Google Scholar 

  44. N.I. Shah, N. Jabeen, S. Irum, K.S. Ahmad, I. Tauseef, T.F. Khan, S. Anwaar, S. Shafique, S.K. Haleem, A. Mehmood, S.Z. Hussain, Environmentally benign and economical bio-fabrication of ZnO and Cr-doped ZnO nanoparticles using leaf extract of Citrus reticulata for biological activities. Mater. Today Commun. (2021). https://doi.org/10.1016/J.MTCOMM.2021.102383

    Article  Google Scholar 

  45. G.N. Rajivgandhi, G. Ramachandran, N.S. Alharbi, S. Kadaikunnan, J.M. Khaleed, N. Manokaran, W.J. Li, Substantial effect of Cr doping on the antimicrobial activity of ZnO nanoparticles prepared by ultrasonication process. Mater. Sci. Eng.: B. 263, 114817 (2021). https://doi.org/10.1016/J.MSEB.2020.114817

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MA: supervision, conceptualization, investigation, writing–original draft; MR: formal analysis, investigation; KSP: writing–review & editing, investigation.

Corresponding author

Correspondence to M. Ashokkumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashokkumar, M., Rajkumar, M. & Pugazhvadivu, K.S. Assessment of Properties, Photocatalytic Activity, Cytotoxicity, and Antibacterial Activity of (Cu, Cr) Dual-Doped ZnO Nanoparticles. J Inorg Organomet Polym 33, 2974–2983 (2023). https://doi.org/10.1007/s10904-023-02730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02730-9

Keywords

Navigation