Skip to main content
Log in

Synthesis, Structural, Magnetic and High-Frequency Electrical Properties of Mn0.8Zn0.2Fe2O4/Polypyrrole Core–Shell Composite Using Waste Batteries

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present work, the prepared Mn0.8Zn0.2Fe2O4 ferrites (MZF) via recycling process of Zn–C batteries and auto-combustion route (using different fuels) were used to synthesize MZF/polypyrroly (PPy) nanocomposites via the in-situ polymerization technique. The core–shell structure formed was confirmed using X-ray diffraction, transmission electron microscopy and Fourier transform infrared techniques. The thermogravimetric measurements suggests that the presence of MZF was found to catalyze PPy thermal decomposition and decreasing its thermal stability through increasing its exposed surface. The core–shell structure was found also to vanish the MZF magnetic properties through the insulation effect of the non-magnetic PPy coat. A possible schematic diagram for the core–shell formation mechanism was suggested and discussed. AC-conductivity vs. temperature clearly reveals a metallic behavior of all the samples with a dramatic increase in the MZF conductivities by addition of PPy. The main conduction mechanism was found to be through polarons. The higher dielectric values obtained suggests their use as a microwave absorbing materials besides being a promising candidates in the electromagnetic shielding applications. Generally, we can conclude that, the complete coating of MZF particles with PPy not only greatly influence the magnetic property but also greatly affected and improved the electrical properties. The ferrites’ preparation method was found not to affect the structural, magnetic or electrical properties owing to the core–shell structure formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data and materials will be available on demand.

Code Availability

Not applicable.

References

  1. X. Feng, C. Mao, G. Yang, W. Hou, J.-J. Zhu, Polyaniline/Au composite hollow spheres: synthesis, characterization, and application to the detection of dopamine. Langmuir 22, 4384–4389 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. X. Lu, Y. Yu, L. Chen, H. Mao, H. Gao, J. Wang, W. Zhang, Y. Wei, Aniline dimer–COOH assisted preparation of well-dispersed polyaniline–Fe3O4 nanoparticles. Nanotechnology 16, 1660 (2005)

    Article  CAS  Google Scholar 

  3. Q. Zhou, G. Shi, Conducting polymer-based catalysts. J. Am. Chem. Soc. 138, 2868–2876 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Z. Li, M. Ye, A. Han, H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer. J. Mater. Sci.: Mater. Electron. 27, 1031–1043 (2016)

    CAS  Google Scholar 

  5. K. Krukiewicz, A. Kruk, R. Turczyn, Evaluation of drug loading capacity and release characteristics of PEDOT/naproxen system: effect of doping ions. Electrochim. Acta 289, 218–227 (2018)

    Article  CAS  Google Scholar 

  6. M.H. Abdel-Aziz, M. Zwawi, A.F. Al-Hossainy, MSh. Zoromba, Conducting polymer thin film for optoelectronic devices applications. Polym. Adv. Technol. 32, 2588–2596 (2021)

    Article  CAS  Google Scholar 

  7. K.T. Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, Enhanced magnetic properties of polymer-magnetic nanostructures synthesized by ultrasonication. J. Alloys Compd. 720, 395–400 (2017)

    Article  CAS  Google Scholar 

  8. K.D. Martinson, V.E. Belyak, D.D. Sakhno, A.A. Ivanov, L.A. Lebedev, L.A. Nefedov, I.B. Panteleev, V.I. Popkov, Solution combustion assisted synthesis of ultra-magnetically soft LiZnTiMn ferrite ceramics. J. Alloys Compd. 894, 162554 (2022)

    Article  CAS  Google Scholar 

  9. K.D. Martinson, A.A. Ivanov, I.B. Panteleev, V.I. Popkov, Effect of sintering temperature on the synthesis of LiZnMnFe microwave ceramics with controllable electro/magnetic properties. Ceram. Int. 47, 30071–30081 (2021)

    Article  CAS  Google Scholar 

  10. J. Azadmanjiri, Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering. J. Non-Cryst. Solids 353, 4170–4173 (2007)

    Article  CAS  Google Scholar 

  11. J. Topfer, A. Angermann, Nanocrystalline magnetite and Mn–Zn ferrite particles via the polyol process: synthesis and magnetic properties. Mater. Chem. Phys. 129, 337–342 (2011)

    Article  CAS  Google Scholar 

  12. J. Ding, X.Y. Liu, J. Wang, Y. Shi, Ultrafine ferrite particles prepared by coprecipitation/mechanical milling. Mater. Lett. 44, 19–22 (2000)

    Article  CAS  Google Scholar 

  13. Z.X. Yue, W.Y. Guo, J. Zhou, Z.L. Gui, L.T. Li, Synthesis of nanocrystilline ferrites by sol–gel combustion process: the influence of pH value of solution. J. Magn. Magn. Mater. 270, 216–223 (2004)

    Article  CAS  Google Scholar 

  14. K. Praveena, K. Sadhana, S.R. Murthy, Elastic behaviour of microwave hydrothermally synthesized nanocrystalline. Mater. Res. Bull. 47, 1096–1103 (2012)

    Article  CAS  Google Scholar 

  15. A. Kosak, D. Markovec, M. Drofenik, A. Znidarsic, In situ synthesis of magnetic MnZn-ferrite nanoparticles using reverse microemulsions. J. Magn. Magn. Mater. 272, 1542–1544 (2004)

    Article  CAS  Google Scholar 

  16. G. Xi, Y. Li, Y. Liu, Study on preparation of manganese–zinc ferrites using spent Zn–Mn batteries. Mater. Lett. 58, 1164–1167 (2004)

    Article  CAS  Google Scholar 

  17. J. Nan, D. Han, M. Cui, M. Yang, L. Pan, Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J. Hazard. Mater. B 133, 257–261 (2006)

    Article  CAS  Google Scholar 

  18. G. Xi, L. Yang, M. Lu, Study on preparation of nanocrystalline ferrites using spent alkaline Zn–Mn batteries. Mater. Lett. 60, 3582–3585 (2006)

    Article  CAS  Google Scholar 

  19. P. Chang-hong, B. Ben-shuai, C. Yi-feng, Study on the preparation of Mn–Zn soft magnetic ferrite powders from waste Zn–Mn dry batteries. Waste Manag. 28, 326–332 (2008)

    Article  CAS  Google Scholar 

  20. T. Kim, G. Senanayake, J. Kang, J. Sohn, K. Rhee, S. Lee, S. Shin, Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite nanoparticles. Hydrometallurgy 96, 154–158 (2009)

    Article  CAS  Google Scholar 

  21. P. Hu, D. Pan, S. Zhang, J. Tian, A.A. Volinsky, Mn–Zn soft magnetic ferrite nanoparticles synthesized from spent alkaline Zn–Mn batteries. J. Alloys Compd. 509, 3991–3994 (2011)

    Article  CAS  Google Scholar 

  22. M.A. Gabal, E.A. Al-Harthy, Y.M. Al Angari, A. Awad, A.A. Al-Juaid, A.M. Abdel-Daiem, A. Saeed, Recovery of Mn0.8Zn0.2Fe2O4 from Zn–C battery: auto-combustion synthesizes, characterization, and electro-magnetic properties. J. Sol-Gel Sci. Technol. 100, 526–537 (2021)

    Article  CAS  Google Scholar 

  23. Y. Li, R. Yi, A. Yan, L. Deng, K. Zhou, X. Liu, Facile synthesis and properties of ZnFe2O4 and ZnFe2O4/polypyrrole core–shell nanoparticles. Solid State Sci. 11, 1319–1324 (2009)

    Article  CAS  Google Scholar 

  24. P. Karthikeyan, S.S.D. Elanchezhiyan, S. Meenakshi, C.M. Park, Magnesium ferrite-reinforced polypyrrole hybrids as an effective adsorbent for the removal of toxic ions from aqueous solutions: preparation, characterization, and adsorption experiments. J. Hazard. Mater. 408, 124892 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. J. Guo, X. Li, Z. Chen, J. Zhu, X. Mai, R. Wei, K. Sun, H. Liu, Y. Chen, N. Naik, Z. Guo, Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 108, 64–72 (2022)

    Article  Google Scholar 

  26. X. Ren, J. Wang, H. Yin, Y. Tang, H. Fan, H. Yuan, S. Cui, L. Huang, Hierarchical CoFe2O4@PPy hollow nanocubes with enhanced microwave absorption. Appl. Surf. Sci. 575, 151752 (2022)

    Article  CAS  Google Scholar 

  27. L. Jiang, C. Dong, B. Jin, Z. Wen, Q. Jiang, ZnFe2O4@PPy core–shell structure for high-rate lithium-ion storage. J. Electroanal. Chem. 851, 113442 (2019)

    Article  CAS  Google Scholar 

  28. M.A. Chougulea, S.G. Pawara, P.R. Godsea, R.N. Mulika, S. Senb, V.B. Patil, Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Lett. 1, 6–10 (2011)

    Article  CAS  Google Scholar 

  29. U.O. Aigbe, R. Das, W.H. Ho, V. Srinivasu, A. Maity, A novel method for removal of Cr(VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Sep. Purif. Technol. 194, 377–387 (2018)

    Article  CAS  Google Scholar 

  30. I. Seo, M. Pyo, G. Cho, Micrometer to nanometer patterns of polypyrrole thin films via microphase separation and molecular mask. Langmuir 18, 7253–7257 (2002)

    Article  CAS  Google Scholar 

  31. J. Luo, Y. Xu, H. Mao, Magnetic and microwave absorption properties of rare earth ions (Sm3+, Er3+) doped strontium ferrite and its nanocomposites with polypyrrole. J. Magn. Magn. Mater. 381, 365–371 (2015)

    Article  CAS  Google Scholar 

  32. C. Zhang, Q. Li, Y. Ye, Preparation and characterization of polypyrrole/nano-SrFe12O19 composites by in situ polymerization method. Synth. Met. 159, 1008–1013 (2009)

    Article  CAS  Google Scholar 

  33. Y. Wang, L. Li, J. Jiang, H. Liu, H. Qiu, F. Xu, Conductivity and magnetic properties of Zn0.6Cu0.4Cr0.5La0.04Fe1.46O4/PPy composites prepared by in situ inverse microemulsion polymerization. React. Funct. Polym. 68, 1587–1593 (2008)

    Article  CAS  Google Scholar 

  34. P. Qiao, B. Zhao, Z. Nan, Facile fabrication of ZnLa0.02Fe1.98O4/PPy and application inwater treatment. Mater. Sci. Eng. B 178, 1476–1482 (2013)

    Article  CAS  Google Scholar 

  35. S.T. Assar, H.F. Abosheiasha, E.H. El-Ghazzawy, Preparation and study of some physical properties of Co–Ni–Li ferrite/polypyrrole nanocomposites. J. Alloys Compd. 802, 553–561 (2019)

    Article  CAS  Google Scholar 

  36. T. Qi, Z. Yao, J. Zhou, H. Lin, P. Liu, Y. Lei, Y. Zuo, Interfacial polymerization preparation of polyaniline fibers/Co0.2Ni0.4Zn0.4Fe2O4 urchin-like composite with superior microwave absorption performance. J. Alloys Compd. 769, 669–677 (2018)

    Article  CAS  Google Scholar 

  37. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)

    Article  CAS  Google Scholar 

  38. E. Jakab, E. Meszaros, M. Omastova, Thermal decomposition of polypyrrole. J. Therm. Anal. Calorim. 88, 515–521 (2007)

    Article  CAS  Google Scholar 

  39. J. Tang, K. Wang, Y. Lu, N. Liang, X. Qin, G. Tian, D. Zhang, S. Feng, H. Yue, Mesoporous core–shell structure NiFe2O4@polypyrrole micro-rod with efficient electromagnetic wave absorption in C, X, Ku wavebands. J. Magn. Magn. Mater. 514, 167268 (2020)

    Article  CAS  Google Scholar 

  40. B.I. Kharisov, H.V. Rasika Dias, O.V. Kharissova, Mini-review: ferrite nanoparticles in the catalysis. Arab. J. Chem. 12, 1234–1246 (2019)

    Article  CAS  Google Scholar 

  41. M.A. Gabal, N.G. Al-Zahrani, Y.M. Al Angari, A.A. Al-Juaid, M.A. Abdel-Fadeel, S.R. Alharbi, R.M. El-Shishtawy, CoFe2O4/MWCNTs nano-composites structural, thermal, magnetic, electrical properties and dye removal capability. Mater. Res. Exp. 6, 105059 (2019)

    Article  CAS  Google Scholar 

  42. I.M. Resta, J.M. Selles, M. Lanus-Mendez-Elizalde, P.S. Antonel, F.V. Molina, Polypyrrole-CoFe2O4 nanocomposites: polymer influence on magnetic behavior and particle effects on polymer conduction. Polym. Compos. 39, 4617–4627 (2018)

    Article  CAS  Google Scholar 

  43. J. Stejskal, Conducting polymer–silver composites. Chem. Pap. 67, 814–848 (2013)

    Article  CAS  Google Scholar 

  44. H. Kuzmany, M. Mehring, S. Roth, Electronic Properties of Conjugated Polymers (Springer-Verlag, Berlin, 1987)

    Book  Google Scholar 

  45. Y. Xie, X. Hong, Y. Gao, M. Li, J. Liu, J. Wang, J. Lu, Synthesis and characterization of La/Nd-doped barium-ferrite/polypyrrole nanocomposites. Synth. Met. 162, 677–681 (2012)

    Article  CAS  Google Scholar 

  46. J.A. Khan, M. Qasim, B.R. Singh, S. Singh, M. Shoeb, W. Khan, D. Das, A.H. Naqvi, Synthesis and characterization of structural, optical, thermal and dielectric properties of polyaniline/CoFe2O4 nanocomposites with special reference to photocatalytic activity. Spectrochim. Acta A 109, 313–321 (2013)

    Article  CAS  Google Scholar 

  47. H. Deligoz, A. Baykal, E.E. Tanrıverdi, Z. Durmus, M.S. Toprak, Synthesis, structural and electrical properties of triethylene glycol (TREG) stabilized Mn0.2Co0.8Fe2O4 NPs. Mater. Res. Bull. 47, 537–543 (2012)

    Article  CAS  Google Scholar 

  48. M.B. Mohamed, K. El-Sayed, Structural, magnetic and dielectric properties of (PANI)–Ni0.5Zn0.5Fe1.5Cr0.5O4 nanocomposite. Compos. B 56, 270–278 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gabal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Consent for Publication

By submitting the manuscript, the authors understand that the material presented in this manuscript has not been published before, nor has it been submitted for publication to another journal. The corresponding author attests that this study has been approved by all the co-authors concerned.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabal, M.A., Al-Harthy, E.A., Al Angari, Y.M. et al. Synthesis, Structural, Magnetic and High-Frequency Electrical Properties of Mn0.8Zn0.2Fe2O4/Polypyrrole Core–Shell Composite Using Waste Batteries. J Inorg Organomet Polym 32, 1975–1987 (2022). https://doi.org/10.1007/s10904-022-02241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02241-z

Keywords

Navigation