Skip to main content
Log in

Core–Shell Nanoarchitectonics of CoFe2O4 Encapsulated La2Fe2O6 Nanoparticles for Their Use in Various Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

It would be helpful to achieve appropriate synthetic routes to attain larger-scale production at industrial levels of nanocomposites at low costs. In the present work, diphasic composites with core–shell nanostructures formed by La2Fe2O6/CoFe2O4 are investigated. The core–shell structure is fabricated via different preparation methods. The advantages and the demerits of the synthesis techniques are discussed. The presence of both the spinel CoFe2O4 nano ferrite and orthorhombic La2Fe2O6 perovskite phases is revealed by X-ray diffraction. XPS spectroscopy is utilized to investigate the chemical composition of the prepared samples. The hysteresis loops of the prepared samples exhibit a smooth loop that is resulted from the existence of two homogeneous magnetic phases. For the first time, it has been found that the preparation conditions have the advantage of reducing the switching field distribution value for the core–shell nanoparticles. Exchange coupled core–shell nanoparticles present a high potential to regulate the magnetic properties for numerous applications such as heavy metal removal and/or data storage devices. The maximum adsorption capacity (qm) of Cr III on the core–shell (S3) is higher compared to other adsorbents previously testified in the literature. The cost-effective and eco-friendly prepared core–shell samples with good metal removal capacity have great potential for commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Zhang, Q. Qu, A. Zhou, Y. Wang, J. Zhang, R. Xiong, V. Lenders, B.B. Manshian, D. Hua, S.J. Soenen, C. Huang, Adv. Colloid Interface Sci. 299, 102568 (2022)

    CAS  PubMed  Google Scholar 

  2. S. Rashidi Dafeh, P. Iranmanesh, P. Salarizadeh, Mater. Sci. Eng. C 98, 205 (2019)

    CAS  Google Scholar 

  3. G. Kandasamy, Nanotechnology 30, 502001 (2019)

    CAS  PubMed  Google Scholar 

  4. K.C. Verma, M. Singh, R.K. Kotnala, N. Goyal, J. Magn. Magn. Mater. 469, 483 (2019)

    CAS  Google Scholar 

  5. A. Pajor-Świerzy, K. Szczepanowicz, A. Kamyshny, S. Magdassi, Adv. Colloid Interface Sci. 299, 102578 (2022)

    PubMed  Google Scholar 

  6. J. Dai, X. Wen, W. Feng, C. Cheng, D. Huang, Mater. Chem. Phys. 276, 125393 (2022)

    CAS  Google Scholar 

  7. C. Gao, F. Lyu, Y. Yin, Chem. Rev. 121, 834 (2021)

    CAS  PubMed  Google Scholar 

  8. S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang, P. Liu, J. Mater. Sci. Technol. 88, 56 (2021)

    Google Scholar 

  9. S. Okada, Y. Nakahara, M. Watanabe, T. Tamai, Y. Kobayashi, S. Yajima, Bull. Chem. Soc. Jpn. 94, 1616 (2021)

    CAS  Google Scholar 

  10. S.K. Kajli, D. Ray, S.C. Roy, J. Alloys Compd. 895, 162546 (2022)

    CAS  Google Scholar 

  11. D. Zablotsky, I. Segal, A. Zablotskaya, M. Maiorov, T.A. Nguyen, Woodhead Publishing Series in Electronic and Optical Materials (Woodhead Publishing, Cambridge, 2021), pp. 501–527

    Google Scholar 

  12. S. Behara, T. Poonawala, T. Thomas, Comput. Mater. Sci. 188, 110191 (2021)

    CAS  Google Scholar 

  13. I.H. Lone, J. Aslam, N.R.E. Radwan, A.H. Bashal, A.F.A. Ajlouni, A. Akhter, Nanoscale Res. Lett. 14, 142 (2019)

    PubMed  PubMed Central  Google Scholar 

  14. D. Serrate, J.M. DeTeresa, M.R. Ibarra, J. Phys.: Condens. Matter 19, 23201 (2007)

    Google Scholar 

  15. H. Kato, T. Okuda, Y. Okimoto, Y. Tomioka, K. Oikawa, T. Kamiyama, Y. Tokura, Phys. Rev. B 69, 184412 (2004)

    Google Scholar 

  16. T. Kimura, H. Sawada, K. Terakura, Nature 395, 677 (1998)

    Google Scholar 

  17. M. Madhukara Naik, H.S. Bhojya Naik, G. Nagaraju, M. Vinuth, K. Vinu, R. Viswanath, Nano-Struct. Nano-Objects 19, 100322 (2019)

    CAS  Google Scholar 

  18. S.M. Ansari, S.R. Suryawanshi, M.A. More, D. Sen, Y.D. Kolekar, C.V. Ramana, Chem. Phys. Lett. 701, 151 (2018)

    CAS  Google Scholar 

  19. B.J. Rani, M. Ravina, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Nano-Struct. Nano-Objects 14, 84 (2018)

    CAS  Google Scholar 

  20. J. Cheon, J.-I. Park, J. Choi, Y. Jun, S. Kim, M.G. Kim, Y.-M. Kim, Y.J. Kim, Proc. Natl. Acad. Sci. USA 103, 3023 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. G.C. Lavorato, E. Lima, H.E. Troiani, R.D. Zysler, E.L. Winkler, Nanoscale 9, 10240 (2017)

    CAS  PubMed  Google Scholar 

  22. S.M. Yusuf, P.K. Manna, M.M. Shirolkar, S.K. Kulkarni, R. Tewari, G.K. Dey, J. Appl. Phys. 113, 173906 (2013)

    Google Scholar 

  23. H. Zeng, S. Sun, J. Li, Z.L. Wang, J.P. Liu, Appl. Phys. Lett. 85, 792 (2004)

    CAS  Google Scholar 

  24. J.-H. Lee, J. Jang, J. Choi, S.H. Moon, S. Noh, J. Kim, J.-G. Kim, I.-S. Kim, K.I. Park, J. Cheon, Nat. Nanotechnol. 6, 418 (2011)

    CAS  PubMed  Google Scholar 

  25. O. Masala, D. Hoffman, N. Sundaram, K. Page, T. Proffen, G. Lawes, R. Seshadri, Solid State Sci. 8, 1015 (2006)

    CAS  Google Scholar 

  26. E.E. Ateia, A.T. Mohamed, H. Elshimy, Appl. Nanosci. 10, 1489 (2020)

    CAS  Google Scholar 

  27. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, J. Mater. Sci.: Mater. Electron. 28, 5846 (2017)

    CAS  Google Scholar 

  28. B. Xu, G. Zhou, X. Wang, NPG Asia Mater. 7, e164 (2015)

    Google Scholar 

  29. E.Y. Vedmedenko, Competing Interactions and Patterns in Nanoworld (Wiley-VCH, Berlin, 2007), pp. 103–107. https://doi.org/10.1002/9783527610501

    Book  Google Scholar 

  30. W.P. Wang, H. Yang, T. Xian, J.L. Jiang, Mater. Trans. 53, 1586 (2012)

    CAS  Google Scholar 

  31. D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Chem. Chem. Phys. 19, 210 (2017)

    CAS  Google Scholar 

  32. J. Li, M. Xu, G. Yao, B. Lai, Chem. Eng. J. 348, 1012 (2018)

    CAS  Google Scholar 

  33. B. Aguilar, T.E. Soto, J. de la Torre Medina, O. Navarro, Phys. B 556, 108 (2019)

    CAS  Google Scholar 

  34. Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, Appl. Surf. Sci. 254, 6972 (2008)

    CAS  Google Scholar 

  35. M. Béjaoui, A. Elmhamdi, L. Pascual, P. Pérez-Bailac, K. Nahdi, A. Martínez-Arias, Catalysts 11, 15 (2020)

    Google Scholar 

  36. K. Zhao, Y. Shen, F. He, Z. Huang, G. Wei, A. Zheng, H. Li, Z. Zhao, J. Rare Earths 34, 1032 (2016)

    CAS  Google Scholar 

  37. F. Song, X. Shen, M. Liu, J. Xiang, J. Solid State Chem. 185, 31 (2012)

    CAS  Google Scholar 

  38. P. Maltoni, T. Sarkar, G. Barucca, G. Varvaro, F. Locardi, D. Peddis, R. Mathieu, J. Phys. Chem. C 125, 5927 (2021)

    CAS  Google Scholar 

  39. J.M. Soares, V.B. Galdino, F.L.A. Machado, J. Magn. Magn. Mater. 350, 69 (2014)

    CAS  Google Scholar 

  40. G.B. Han, R.W. Gao, S. Fu, W.C. Feng, H.Q. Liu, W. Chen, W. Li, Y.Q. Guo, Appl. Phys. A 81, 579 (2005)

    CAS  Google Scholar 

  41. T. Ozkaya, M.S. Toprak, A. Baykal, H. Kavas, Y. Köseoğlu, B. Aktaş, J. Alloys Compd. 472, 18 (2009)

    CAS  Google Scholar 

  42. Z.L. Liu, Y.J. Liu, K.L. Yao, Z.H. Ding, J. Tao, X. Wang, J. Mater. Synth. Process. 10, 83 (2002)

    CAS  Google Scholar 

  43. N.O. Núñez, P. Tartaj, M.P. Morales, P. Bonville, C.J. Serna, Chem. Mater. 16, 3119 (2004)

    Google Scholar 

  44. E.E. Carpenter, C. Sangregorio, C.J. O’Connor, IEEE Trans. Magn. 35, 3496 (1999)

    CAS  Google Scholar 

  45. M.S.A. Darwish, H. Kim, H. Lee, C. Ryu, J. Young Lee, J. Yoon, Nanomaterials (Basel, Switzerland) 10, 991 (2020)

    CAS  Google Scholar 

  46. T. Ibusuki, S. Kojima, O. Kitakami, Y. Shimada, IEEE Trans. Magn. 37, 2223 (2001)

    CAS  Google Scholar 

  47. E.E. Ateia, A.T. Mohamed, M. Maged, A. Abdelazim, Appl. Phys. A 126, 669 (2020)

    CAS  Google Scholar 

  48. G. Long, H. Zhang, D. Li, R. Sabirianov, Z. Zhang, H. Zeng, Appl. Phys. Lett. 99, 202103 (2011)

    Google Scholar 

  49. H. Kirchmayr, Encyclopedia of Materials: Science and Technology, 2nd edn. (Pergamon Press, Oxford, 2001), pp. 4754–4757

    Google Scholar 

  50. S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, J. Mater. Chem. 21, 16819 (2011)

    CAS  Google Scholar 

  51. N. Ayawei, A.N. Ebelegi, D. Wankasi, J. Chem. 2017, 3039817 (2017)

    Google Scholar 

  52. H.K. Boparai, M. Joseph, D.M. O’Carroll, J. Hazard. Mater. 186, 458 (2011)

    CAS  PubMed  Google Scholar 

  53. S.K. Maji, S.-W. Wang, C.-W. Liu, Desalin. Water Treat. 51, 7775 (2013)

    CAS  Google Scholar 

  54. F. Haghseresht, G.Q. Lu, Energy Fuels 12, 1100 (1998)

    CAS  Google Scholar 

  55. M.T. Bankole, A.S. Abdulkareem, I.A. Mohammed, S.S. Ochigbo, J.O. Tijani, O.K. Abubakre, W.D. Roos, Sci. Rep. 9, 4475 (2019)

    PubMed  PubMed Central  Google Scholar 

  56. F. Togue Kamga, Appl. Water Sci. 9, 1 (2018)

    Google Scholar 

  57. N. Kannan, M.M. Sundaram, Dyes Pigm. 51, 25 (2001)

    CAS  Google Scholar 

  58. R. Qadeer, Adsorption 11, 51 (2005)

    CAS  Google Scholar 

  59. Y.S. Ho, G. Mckay, Process Saf. Environ. Prot. 76, 183 (1998)

    CAS  Google Scholar 

  60. H. Wang, A. Zhou, F. Peng, H. Yu, J. Yang, J. Colloid Interface Sci. 316, 277 (2007)

    CAS  PubMed  Google Scholar 

  61. V.K. Gupta, D. Pathania, S. Sharma, S. Agarwal, P. Singh, J. Mol. Liq. 177, 343 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This paper is supported financially by the Academy of Scientific Research and Technology (ASRT), Egypt, under initiatives of Science Up Faculty of Science (Grant No. 6621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira T. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Mohamed, A.T. Core–Shell Nanoarchitectonics of CoFe2O4 Encapsulated La2Fe2O6 Nanoparticles for Their Use in Various Applications. J Inorg Organomet Polym 32, 1389–1399 (2022). https://doi.org/10.1007/s10904-021-02202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02202-y

Keywords

Navigation