Skip to main content
Log in

Composite Nanoarchitectonics with Polythiophene, MWCNTs-G, CuO and Chitosan as a Voltammetric Sensor for Detection of Cd(II) Ions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, we describe an electrochemical method for detecting Cd(II) ions, utilizing a glassy carbon electrode (GCE) modified with polythiophene (PTH)/multi-walled carbon nanotubes with grapheme (MECNTs-G), chitosan (CS), and CuO. The PTH/MWCNTs-G/CS/CuO was prepared via an in situ oxidative polymerization route. XRD and FT-TR analysis confirmed that the nanocomposites were successfully prepared. TEM, SEM, EDX, TGA, and DTG were utilized to study the morphological and thermal properties of the newly synthesized materials. The electrochemical detection of Cd(II) was achieved by CV and SWV. The cadmium ions exhibited a linear relationship at concentrations of 30–0.01 µM with the PTH/MWCNTs-G/CS/CuO/GCE. The limit of detection and limit of quantification were found to be 0.014 and 0.049 µM, respectively. The stability, selectivity, and reproducibility of the modified electrode were also studied. Good recovery was achieved for the practical application of PTH/MWCNTs-G/CS/CuO/GCE in a tap-water sample.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Sengupta, K. Pramanik, P. Sarkar, Simultaneous detection of trace Pb (II), Cd (II) and Hg (II) by anodic stripping analyses with glassy carbon electrode modified by solid phase synthesized iron-aluminate nano particles. Sens. Actuators B Chem. 329, 129052 (2020)

    Google Scholar 

  2. M.-L. Lin, S.-J. Jiang, Determination of As, Cd, Hg and Pb in herbs using slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry. Food Chem. 141(3), 2158–2162 (2013)

    CAS  PubMed  Google Scholar 

  3. M.S. Jiménez, M.T. Gómez, J.R. Castillo, Multi-element analysis of compost by laser ablation-inductively coupled plasma mass spectrometry. Talanta 72(3), 1141–1148 (2007)

    PubMed  Google Scholar 

  4. Q. Zhou, M. Lei, Y. Liu, Y. Wu, Y. Yuan, Simultaneous determination of cadmium, lead and mercury ions at trace level by magnetic solid phase extraction with Fe@ Ag@ Dimercaptobenzene coupled to high performance liquid chromatography. Talanta 175, 194–199 (2017)

    CAS  PubMed  Google Scholar 

  5. M. Thirumalai, S.N. Kumar, D. Prabhakaran, N. Sivaraman, M.A. Maheswari, Dynamically modified C18 silica monolithic column for the rapid determinations of lead, cadmium and mercury ions by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1569, 62–69 (2018)

    CAS  PubMed  Google Scholar 

  6. S. Li et al., Electrochemical microfluidics techniques for heavy metal ion detection. Analyst 143(18), 4230–4246 (2018)

    CAS  PubMed  Google Scholar 

  7. X. Zheng et al., Highly sensitive determination of lead (ii) and cadmium (ii) by a large surface area mesoporous alumina modified carbon paste electrode. Rsc Adv. 8(14), 7883–7891 (2018)

    CAS  Google Scholar 

  8. C. Göde, M.L. Yola, A. Yılmaz, N. Atar, S. Wang, A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: application to simultaneous determination of Fe (III), Cd (II) and Pb (II) ions. J. Colloid Interface Sci. 508, 525–531 (2017)

    PubMed  Google Scholar 

  9. W. Wu et al., Simultaneous voltammetric determination of cadmium (II), lead (II), mercury (II), zinc (II), and copper (II) using a glassy carbon electrode modified with magnetite (Fe 3 O 4) nanoparticles and fluorinated multiwalled carbon nanotubes. Microchim. Acta 186(2), 1–10 (2019)

    Google Scholar 

  10. A. Moutcine et al., Preparation, characterization and simultaneous electrochemical detection toward Cd (II) and Hg (II) of a phosphate/zinc oxide modified carbon paste electrode. Inorg. Chem. Commun. 116, 107911 (2020)

    CAS  Google Scholar 

  11. H. Dai, N. Wang, D. Wang, H. Ma, M. Lin, An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd (II) and Pb (II). Chem. Eng. J. 299, 150–155 (2016)

    CAS  Google Scholar 

  12. Y. Liu, J. Tang, X. Chen, J.H. Xin, Decoration of carbon nanotubes with chitosan. Carbon N. Y. 43(15), 3178–3180 (2005)

    CAS  Google Scholar 

  13. C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641–678 (2009)

    CAS  Google Scholar 

  14. I. Younes, M. Rinaudo, Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 13(3), 1133–1174 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. S.D. Guna Vathana, J. Wilson, R. Prashanthi, A.C. Peter, CuO nanoflakes anchored Polythiophene nanocomposite: voltammetric detection of L-Tryptophan. Inorg. Chem. Commun. 124, 108398 (2020)

    Google Scholar 

  16. S.A. Alqarni, M.A. Hussein, A.A. Ganash, Highly sensitive and selective electrochemical determination of sunset yellow in food products based on AuNPs/PANI-co-PoAN-co-PoT/GO/Au electrode. ChemistrySelect 3(46), 13167–13177 (2018). https://doi.org/10.1002/slct.201802528

    Article  CAS  Google Scholar 

  17. M.A. Hussein, A.A. Ganash, S.A. Alqarni, Electrochemical sensor-based gold nanoparticle/poly(aniline-co-o-toluidine)/ graphene oxide nanocomposite modified electrode for hexavalent chromium detection: a real test sample. Polym. Technol. Mater. 58(13), 1423–1436 (2019). https://doi.org/10.1080/25740881.2018.1563121

    Article  CAS  Google Scholar 

  18. D.F. Katowah et al., Selective Hg2+ sensor performance based various carbon-nanofillers into CuO-PMMA nanocomposites. Polym. Adv. Technol. 31(9), 1946–1962 (2020)

    CAS  Google Scholar 

  19. D.F. Katowah, M.A. Hussein, M.M. Rahman, Q.A. Alsulami, M.M. Alam, A.M. Asiri, Fabrication of hybrid PVA-PVC/SnZnOx/SWCNTs nanocomposites as Sn2+ ionic probe for environmental safety. Polym. Technol. Mater. 59(6), 642–657 (2020)

    CAS  Google Scholar 

  20. D.F. Katowah et al., Selective fabrication of an electrochemical sensor for Pb2+ based on Poly (pyrrole-co-o–toluidine)/CoFe2O4 Nanocomposites. ChemistrySelect 4(35), 10609–10619 (2019)

    CAS  Google Scholar 

  21. D.F. Katowah et al., The performance of various SWCNT loading into CuO–PMMA nanocomposites towards the detection of Mn 2+ ions. J. Inorg. Organomet. Polym. Mater. 30, 5024–5041 (2020)

    CAS  Google Scholar 

  22. D.F. Katowah et al., Designed network of ternary core-shell PPCOT/NiFe2O4/C-SWCNTs nanocomposites. A Selective Fe3+ ionic sensor. J. Alloys Compd 834, 155020 (2020)

    CAS  Google Scholar 

  23. K. Rovina, S. Siddiquee, S. Md Shaarani, An electrochemical sensor for the determination of tartrazine based on CHIT/GO/MWCNTs/AuNPs composite film modified glassy carbon electrode. Drug Chem. Toxicol 44, 447 (2019)

    PubMed  Google Scholar 

  24. A. Husain, S. Ahmad, F. Mohammad, Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122324

    Article  Google Scholar 

  25. A. Husain, S. Ahmad, F. Mohammad, Electrical conductivity and alcohol sensing studies on polythiophene/tin oxide nanocomposites. J. Sci. Adv. Mater. Devices 5(1), 84–94 (2020). https://doi.org/10.1016/j.jsamd.2020.01.002

    Article  Google Scholar 

  26. D.F. Katowah et al., Ternary nanocomposite based poly(pyrrole-co-O-toluidine), cobalt ferrite and decorated chitosan as a selective Co2+ cationic sensor. Compos. Part B-Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.107175

    Article  Google Scholar 

  27. B. Senthilkumar, P. Thenamirtham, R.K. Selvan, Structural and electrochemical properties of polythiophene. Appl. Surf. Sci. 257(21), 9063–9067 (2011)

    CAS  Google Scholar 

  28. J. Mårdalen, E.J. Samuelsen, O.R. Gautun, P.H. Carlsen, X-ray scattering from oriented poly (3-alkylthiophenes). Synth. Met. 48(3), 363–380 (1992)

    Google Scholar 

  29. Y. Li, G. Vamvounis, S. Holdcroft, Tuning optical properties and enhancing solid-state emission of poly (thiophene) s by molecular control: a postfunctionalization approach. Macromolecules 35(18), 6900–6906 (2002)

    CAS  Google Scholar 

  30. T.S. Swathy, M.J. Antony, Tangled silver nanoparticles embedded polythiophene-functionalized multiwalled carbon nanotube nanocomposites with remarkable electrical and thermal properties”. Polymer (Guildf) 189, 122171 (2020)

    CAS  Google Scholar 

  31. M.E.I. Badawy, T.M.R. Lotfy, S.M.S. Shawir, Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. Bull. Natl. Res. Cent. 43(1), 1–14 (2019)

    Google Scholar 

  32. D. Thanasamy, D. Jesuraj, V. Avadhanam, A novel route to synthesis polythiophene with great yield and high electrical conductivity without post doping process. Polymer (Guildf) 175, 32–40 (2019)

    CAS  Google Scholar 

  33. F.A. Harraz, M. Faisal, M. Jalalah, A.A. Almadiy, S.A. Al-Sayari, M.S. Al-Assiri, Conducting polythiophene/alpha-Fe2O3 nanocomposite for efficient methanol electrochemical sensor. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.145226

    Article  Google Scholar 

  34. Y. Xie et al., Preparation and electromagnetic properties of chitosan-decorated ferrite-filled multi-walled carbon nanotubes/polythiophene composites. Compos. Sci. Technol. 99, 141–146 (2014)

    CAS  Google Scholar 

  35. S.D. GunaVathana, P. Thivya, J. Wilson, A.C. Peter, Sensitive voltammetric sensor based on silver dendrites decorated polythiophene nanocomposite: Selective determination of L-Tryptophan. J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2019.127649

    Article  Google Scholar 

  36. F. Avilés, J.V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado, Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon N. Y. 47(13), 2970–2975 (2009)

    Google Scholar 

  37. C.L. Poh, M. Mariatti, A.F.M. Noor, O. Sidek, T.P. Chuah, S.C. Chow, Dielectric properties of surface treated multi-walled carbon nanotube/epoxy thin film composites. Compos. Part B Eng. 85, 50–58 (2016)

    CAS  Google Scholar 

  38. M. Senel et al., Enhanced electrochemical sensing performance by in situ electrocopolymerization of pyrrole and thiophene-grafted chitosan. Int. J. Biol. Macromol. 143, 582–593 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.013

    Article  CAS  PubMed  Google Scholar 

  39. H. Vijeth, S.P. Ashokkumar, L. Yesappa, M. Vandana, H. Devendrappa, Camphor sulfonic acid surfactant assisted polythiophene nanocomposite for efficient electrochemical hydrazine sensor. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab5ef5

    Article  Google Scholar 

  40. T. Ramachandran, V.V. Dhayabaran, Utilization of a MnO2/polythiophene/rGO nanocomposite modified glassy carbon electrode as an electrochemical sensor for methyl parathion. J. Mater. Sci. Electron. 30(13), 12315–12327 (2019). https://doi.org/10.1007/s10854-019-01590-9

    Article  CAS  Google Scholar 

  41. J. Zhao et al., Preparation and characterization of an electromagnetic material: the graphene nanosheet/polythiophene composite. Synth. Met. 181, 110–116 (2013)

    CAS  Google Scholar 

  42. B.X. Valderrama-García, E. Rodríguez-Alba, E.G. Morales-Espinoza, K. Moineau Chane-Ching, E. Rivera, Synthesis and characterization of novel polythiophenes containing pyrene chromophores: thermal, optical and electrochemical properties. Molecules 21(2), 172 (2016)

    PubMed  PubMed Central  Google Scholar 

  43. A.K. Thakur, M. Majumder, R.B. Choudhary, S.N. Pimpalkar, Supercapacitor based on electropolymerized polythiophene and multiwalled carbon nanotubes composites. IOP Conf. Ser.: Mater. Sci. Eng. 149(1), 12166 (2016)

    Google Scholar 

  44. S. Khanmohammadi et al., Polythiophene/TiO2 and polythiophene/ZrO2 nanocomposites: physical and antimicrobial properties against common infections. Biointerface Res. Appl. Chem. 8(4), 3457–3462 (2018)

    CAS  Google Scholar 

  45. B. Singh, R.-A. Doong, D.S. Chauhan, A.K. Dubey, Synthesis and characterization of Fe3O4/Polythiophene hybrid nanocomposites for electroanalytical application”. Mater. Chem. Phys. 205, 462–469 (2018). https://doi.org/10.1016/j.matchemphys.2017.11.040

    Article  CAS  Google Scholar 

  46. M.A. Hussein, B.M. Abu-Zied, A.M. Asiri, The role of mixed graphene/carbon nanotubes on the coating performance of G/CNTs/epoxy resin nanocomposites. Int. J. Electrochem. Sci 11, 7644–7659 (2016)

    CAS  Google Scholar 

  47. D.F. Katowah, G.I. Mohammed, D.A. Al-Eryani, O.I. Osman, T.R. Sobahi, M.A. Hussein, Fabrication of conductive cross-linked polyaniline/G-MWCNTS core-shell nanocomposite: a selective sensor for trace determination of chlorophenol in water samples. Polym. Adv. Technol. 31(11), 2615–2631 (2020)

    CAS  Google Scholar 

  48. S. Parvez et al., Preparation and characterization of artificial skin using chitosan and gelatin composites for potential biomedical application. Polym. Bull. 69(6), 715–731 (2012)

    CAS  Google Scholar 

  49. G. Ma, D. Yang, J.F. Kennedy, J. Nie, Synthesize and characterization of organic-soluble acylated chitosan. Carbohydr. Polym. 75(3), 390–394 (2009)

    CAS  Google Scholar 

  50. A.H. Gedam, R.S. Dongre, Adsorption characterization of Pb (II) ions onto iodate doped chitosan composite: equilibrium and kinetic studies. RSC Adv. 5(67), 54188–54201 (2015)

    CAS  Google Scholar 

  51. A. Bard, Electrochemical Merhods. Fundamentals and Applications, vol. 290 (Wiley, New York, 1980)

    Google Scholar 

  52. R. Madhuvilakku, S. Alagar, R. Mariappan, S. Piraman, Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal. Chim. Acta 1093, 93–105 (2020). https://doi.org/10.1016/j.aca.2019.09.043

    Article  CAS  PubMed  Google Scholar 

  53. R. Pauliukaite, M.E. Ghica, O. Fatibello-Filho, C.M.A. Brett, Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim. Acta 55(21), 6239–6247 (2010). https://doi.org/10.1016/j.electacta.2009.09.055

    Article  CAS  Google Scholar 

  54. S. Sakthinathan et al., Platinum incorporated mordenite zeolite modified glassy carbon electrode used for selective electrochemical detection of mercury ions. Microporous Mesoporous Mater. 292, 109770 (2020)

    CAS  Google Scholar 

  55. A.J. Ahammad, J.-J. Lee, M. Rahman, Electrochemical sensors based on carbon nanotubes. Sensors 9(4), 289–2319 (2009)

    Google Scholar 

  56. S. Lü, Electrochemical determination of 8-azaguanine in human urine at a multi-carbon nanotubes modified electrode. Microchem. J. 77(1), 37–42 (2004)

    Google Scholar 

  57. C. Hu, S. Hu, Carbon nanotube-based electrochemical sensors: principles and applications in biomedical systems. J. Sens. (2009). https://doi.org/10.1155/2009/187615

    Article  Google Scholar 

  58. G.A. Rivas et al., Carbon nanotubes for electrochemical biosensing. Talanta 74(3), 291–307 (2007)

    CAS  PubMed  Google Scholar 

  59. Z. Amirzadeh, S. Javadpour, M.H. Shariat, R. Knibbe, Non-enzymatic glucose sensor based on copper oxide and multi-wall carbon nanotubes using PEDOT: PSS matrix. Synth. Met. 245, 160–166 (2018)

    CAS  Google Scholar 

  60. L. Hou et al., CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: morphology and surface structure effects on the sensing performance. Talanta 188, 41–49 (2018)

    CAS  PubMed  Google Scholar 

  61. Q. Zhang et al., CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208–337 (2014)

    CAS  Google Scholar 

  62. J. Wu, W. Wang, M. Wang, H. Liu, H. Pan, Electrochemical behavior and direct quantitative determination of tanshinone IIA in micro-emulsion. Int. J. Electrochem. Sci. 11(6), 5165–5179 (2016). https://doi.org/10.20964/2016.06.55

    Article  CAS  Google Scholar 

  63. E. Laviron, L. Roullier, C. Degrand, A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J. Electroanal. Chem. Interfacial Electrochem. 112(1), 11–23 (1980)

    CAS  Google Scholar 

  64. N.M. Thanh, N.D. Luyen, T.T.T. Toan, N.H. Phong, N. Van Hop, Voltammetry determination of Pb(II), Cd(II), and Zn(II) at Bismuth Film electrode combined with 8-hydroxyquinoline as a complexing agent. J. Anal. Methods Chem. (2019). https://doi.org/10.1155/2019/4593135

    Article  PubMed  PubMed Central  Google Scholar 

  65. E. Desimoni, B. Brunetti, Presenting analytical performances of electrochemical sensors. some suggestions. Electroanalysis 25(7), 1645–1651 (2013). https://doi.org/10.1002/elan.201300150

    Article  CAS  Google Scholar 

  66. R. Madhu, K.V. Sankar, S.-M. Chen, R.K. Selvan, Eco-friendly synthesis of activated carbon from dead mango leaves for the ultrahigh sensitive detection of toxic heavy metal ions and energy storage applications. Rsc Adv. 4(3), 1225–1233 (2014)

    CAS  Google Scholar 

  67. X. Zhu et al., Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd (II), Pb (II), Cu (II) and Hg (II). Electrochim. Acta 248, 46–57 (2017)

    CAS  Google Scholar 

  68. H. Sopha et al., A new type of bismuth electrode for electrochemical stripping analysis based on the ammonium tetrafluorobismuthate bulk-modified carbon paste. Electroanalysis 22(13), 1489–1493 (2010)

    CAS  Google Scholar 

  69. R. Ouyang, Z. Zhu, C.E. Tatum, J.Q. Chambers, Z.-L. Xue, Simultaneous stripping detection of Zn (II), Cd (II) and Pb (II) using a bimetallic Hg–Bi/single-walled carbon nanotubes composite electrode. J. Electroanal. Chem. 656(1–2), 78–84 (2011)

    CAS  Google Scholar 

  70. H. Lin, G. Li, K. Wu, Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode. Food Chem. 107(1), 531–536 (2008). https://doi.org/10.1016/j.foodchem.2007.08.022

    Article  CAS  Google Scholar 

  71. C. Kokkinos, A. Economou, I. Raptis, C.E. Efstathiou, Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb (II) and Cd (II) by anodic stripping voltammetry. Electrochim. Acta 53(16), 5294–5299 (2008)

    CAS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanaa H. AL-Refai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Refai, H.H., Ganash, A.A. & Hussein, M.A. Composite Nanoarchitectonics with Polythiophene, MWCNTs-G, CuO and Chitosan as a Voltammetric Sensor for Detection of Cd(II) Ions. J Inorg Organomet Polym 32, 713–727 (2022). https://doi.org/10.1007/s10904-021-02125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02125-8

Keywords

Navigation