Skip to main content
Log in

Ligand Modified Metal Organic Framework UiO-66: A Highly Efficient and Stable Catalyst for Oxidative Desulfurization

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

It is reported that the UiO-66(Zr) material could catalyze oxidative desulfurization (ODS) reaction, but its stability is inferior. In this work, a family of functionalized UiO-66(Zr) with different groups (–NH2, –NO2, –Br) were prepared to enhance this material’s activity and stability. Characterizations and ODS tests show that the groups have profound influence over the physicochemical properties of UiO-66(Zr). Among functionalized UiO-66(Zr), UiO-66(Zr)-NO2 exhibited the best ODS activity, their ODS performance is linear correction with their Hammett values. Recycling experiments indicate UiO-66(Zr)-NO2 has no deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Samokhvalov, Desulfurization of real and model liquid fuels using light: photocatalysis and photochemistry. Catal. Rev. 54, 281–343 (2012)

    Article  CAS  Google Scholar 

  2. H. Yang, B. Jiang, Y. Sun, L. Hao, Z. Huang, L. Zhang, Synthesis and oxidative desulfurization of novel lactam-based Brønsted-Lewis acidic ionic liquids. Chem. Eng. J. 306, 131–138 (2016)

    Article  CAS  Google Scholar 

  3. D. Xie, Q. He, Y. Su et al., Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant. Chin. J. Catal. 36, 1205–1213 (2015)

    Article  CAS  Google Scholar 

  4. Y. Qin, S. Xun, L. Zhan et al., Synthesis of mesoporous WO3/TiO2 catalyst and its excellent catalytic performance for the oxidation of dibenzothiophene. New J. Chem. 41, 569–578 (2017)

    Article  CAS  Google Scholar 

  5. S. Du, X. Chen, Q. Sun et al., A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance. Chem. Commun. 52, 3580–3583 (2016)

    Article  CAS  Google Scholar 

  6. C.G. Piscopo, J. Tochtermann, M. Schwarzer et al., Titania supported on silica as an efficient catalyst for deep oxidative desulfurization of a model fuel with exceptionally diluted H2O2. React. Chem. Eng. 3, 13–16 (2018)

    Article  CAS  Google Scholar 

  7. C.G. Piscopo, L. Vollinger, M. Schwarzer et al., Continuous flow desulfurization of a model fuel catalysed by titanium functionalized UiO-66. ChemistrySelect 4, 2806–2809 (2019)

    Article  CAS  Google Scholar 

  8. P. Yang, Z. Zhang, G. Zou, Y. Huang, N. Li, Y. Fan, Template thermolysis to create a carbon dots-embedded mesoporous titanium-oxo sulfate frameworks for visible-light phtocatalytic applications. Inorg. Chem. 59, 2062–2069 (2020)

    Article  CAS  Google Scholar 

  9. P. Yang, Y. Huang, Z. Zhang, N. Li, Y. Fan, Shape-controlled synthesis of the metal-organic frameworks MIL-125 towards a highly enhanced catalytic performance for the oxidative desulfurization of 4,6-dimethyldibenzothiophene. Dalton Trans. 49, 10052–10057 (2020)

    Article  CAS  Google Scholar 

  10. R. Banerjee, H. Furukawa, D. Britt et al., Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131, 3875 (2009)

    Article  CAS  Google Scholar 

  11. H. Furukawa, O. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 974 (2013)

    Article  CAS  Google Scholar 

  12. A. Rejendran, T.-Y. Cui, H.-X. Fan, Z.-F. Yang, J. Feng, W.-Y. Li, A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J. Mater. Chem. A 8, 2246–2285 (2020)

    Article  Google Scholar 

  13. C.G. Piscopo, C.M. Granadeiro, S.S. Balula, D. Bošković, Metal-organic framework-based catalysts for oxidative desulfurization. ChemCatChem. 12, 4721–4731 (2020)

    Article  CAS  Google Scholar 

  14. J.B. DeCoste, G.W. Peterson, H. Jasuja, T.G. Glover, Y. Huang, K.S. Walton, Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A 1, 5642–5650 (2013)

    Article  CAS  Google Scholar 

  15. L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011)

    Article  CAS  Google Scholar 

  16. C.G. Piscopo, A. Polyzoidis, M. Schwarzer, S. Loebbecke, Stability of UiO-66 under acidic treatment: opportunities and limitations for post-synthesis modifications. Microporous Mesoporous Mater. 208, 30–35 (2015)

    Article  CAS  Google Scholar 

  17. C.M. Granadeiro, S.O. Ribeiro, M. Karmaoui et al., Production of ultra-deep sulfur-free diesels using a sustainable catalytic system based on UiO-66(Zr). Chem. Commun. 51, 13818–13821 (2015)

    Article  CAS  Google Scholar 

  18. X. Zhang, P. Huang et al., A metal-organic framework for oxidative desulfurization: UIO-66(Zr) as a catalyst. Fuel 209, 417–423 (2017)

    Article  CAS  Google Scholar 

  19. M.J. Ingleson, J.P. Barrio, J.B. Guilbaud et al., Framework functionalisation triggers metal complex binding. Chem. Commun. 23, 2680–2682 (2008)

    Article  Google Scholar 

  20. S. Wang, J. Wang et al., A Zr metal-organic framework based on tetrakis(4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr-MOFs. Dalton Trans. 44, 8049–8061 (2015)

    Article  CAS  Google Scholar 

  21. J. Long, S. Wang et al., Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. 48, 11656–11658 (2012)

    Article  CAS  Google Scholar 

  22. M. Lammert, S. Bernt, F. Vermoortele et al., Single- and mixed-linker Cr-MIL-101 derivatives: a high-throughput investigation. Inorg. Chem. 52, 8521–8528 (2013)

    Article  CAS  Google Scholar 

  23. Y. Yang, R. Lin, L. Ge et al., Synthesis and characterization of three amino-functionalized metal-organic frameworks based on the 2-aminoterephthalic ligand. Dalton Trans. 44, 8190–8197 (2015)

    Article  CAS  Google Scholar 

  24. S.S. Iremonger, R. Vaidhyanathan, R.K. Mah et al., Zn7O2(RCOO)10 clusters and nitro aromatic linkers in a porous metal-organic framework. Inorg. Chem. 52, 4124–4126 (2013)

    Article  CAS  Google Scholar 

  25. F. Vermoortele, B. Bueken, G. Le Bars et al., Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). J. Am. Chem. Soc. 135, 11465–11468 (2013)

    Article  CAS  Google Scholar 

  26. L. Shen, W. Wu, R. Liang et al., Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 5(19), 9374–9382 (2013)

    Article  CAS  Google Scholar 

  27. Y. Sun, G. Ye, H. Qi et al., Enhancement of oxidative desulfurization performance over UiO-66(Zr) by Ti ion exchange. Chem. Phys. Chem. 18, 1903–1908 (2017)

    Article  Google Scholar 

  28. W. Xie, X. Yang, P. Hu, Cs2.5H0.5PW12O40, encapsulated in metal organic framework UiO-66 as heterogeneous catalysts for acidolysis of soybean oil. Catal. Lett. 147, 1–11 (2017)

    Article  Google Scholar 

  29. M. Jia, F. Yi, S. Liu et al., Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. J. Membr. Sci. 539, 172–177 (2017)

    Article  CAS  Google Scholar 

  30. F. Vermoortele, R. Ameloot, A. Vimont et al., An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chem. Commun. 47, 1521–1523 (2011)

    Article  CAS  Google Scholar 

  31. V. Frederik, V. Matthias, V. Ben et al., Electronic effects of linker substitution on lewis acid catalysis with metal-organic frameworks. Angew. Chem. Int. Ed. 51, 4887–4890 (2012)

    Article  Google Scholar 

  32. G.C. Shearer, S. Forselv, S. Chavan et al., In situ infrared spectroscopic and gravimetric characterisation of the solvent removal and dehydroxylation of the metal organic frameworks UiO-66 and UiO-67. Top. Catal. 56, 770–782 (2013)

    Article  CAS  Google Scholar 

  33. S.M. Chavan, G.C. Shearer, S. Svelle et al., Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology. Inorg. Chem. 53, 9509–9515 (2014)

    Article  CAS  Google Scholar 

  34. X. Mu, J. Jiang, F. Chao et al., Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation. Dalton Trans. 47, 1895–1902 (2018)

    Article  CAS  Google Scholar 

  35. M.N. Timofeeva, V.N. Panchenko, J.W. Jun et al., Effects of linker substitution on catalytic properties of porous zirconium terephthalate UiO-66 in acetalization of benzaldehyde with methanol. Appl. Catal. A 471, 91–97 (2014)

    Article  CAS  Google Scholar 

  36. Z. Sha, H.S. Chan, J. Wu, Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. J. Hazard. Mater. 299, 132–140 (2015)

    Article  CAS  Google Scholar 

  37. Y. Gao, R. Gao, G. Zhang et al., Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes. Fuel 224, 261–270 (2018)

    Article  CAS  Google Scholar 

  38. L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Electronic effects of ligand substitution on metal-organic framework photocatalysts: the case study of UiO-66. Phys. Chem. Chem. Phys. 17, 117–121 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Basic Research Program of Shaanxi Province (No.2019JLM-19). X. Liao would like to thank Shiyanjia Lab (www.shiyan.jia.com) for SEM and XPS test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 1098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Wang, X., Wang, F. et al. Ligand Modified Metal Organic Framework UiO-66: A Highly Efficient and Stable Catalyst for Oxidative Desulfurization. J Inorg Organomet Polym 31, 756–762 (2021). https://doi.org/10.1007/s10904-020-01808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01808-y

Keywords

Navigation