Skip to main content
Log in

Cross-Linked Poly(acrylic acid) Hydrogel Loaded with Zinc Oxide Nanoparticles and Egg White Proteins for Antimicrobial Application

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, poly(acrylic acid) hydrogels cross-linked with poly(ethylene glycol) diacrylate with different cross-linker content (5, 10 and 20%) were successfully prepared by UV photopolymerization. Hen egg white proteins were added to endow the hydrogel with appropriate rheological and antimicrobial properties. Mechanical properties of the hydrogels including swelling ratio, tensile strength and elongation at break were evaluated. Sample with 10% of the cross-linker showed the best mechanical characteristics among others, and was selected for the preparation of the target antimicrobial hydrogels. Zinc oxide nanoparticles (ZnO NPs) were prepared through hydrothermal method, functionalized with amine groups and added in three different amounts (0.1, 0.25 and 0.5 wt%) during preparation of the target hydrogels. The samples were fully characterized by Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, and scanning electron microscopy. The zone of inhibition analysis revealed that the sample bearing 0.5 wt% of the ZnO NPs had the best antimicrobial effect. MTT assay showed all the samples were non-toxic against human dermal fibroblast (HSF-PI-16). The designed hydrogel could be considered as a promising antimicrobial film for further study in wound healing applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Kashyap, N. Kumar, M.R. Kumar, Hydrogels for pharmaceutical and biomedical applications. Crit. Rev. Ther. Drug Carrier Syst. 22, 49–107 (2005)

    Google Scholar 

  2. S.C. Lee, I.K. Kwon, K. Park, Hydrogels for delivery of bioactive agents: a historical perspective. Adv. Drug Deliv. Rev. 65, 17–20 (2013)

    CAS  PubMed  Google Scholar 

  3. Y. Tanaka, J.P. Gong, Y. Osada, Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci. 30, 1–9 (2005)

    CAS  Google Scholar 

  4. A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012)

    Google Scholar 

  5. V.W. Ng, J.M. Chan, H. Sardon, R.J. Ono, J.M. García, Y.Y. Yang, J.L. Hedrick, Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv. Drug Deliv. Rev. 78, 46–62 (2014)

    CAS  PubMed  Google Scholar 

  6. A.M. Diez-Pascual, A.L. Díez-Vicente, Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromolecules 16, 2631–2644 (2015)

    CAS  PubMed  Google Scholar 

  7. I. Jones, L. Currie, R. Martin, A guide to biological skin substitutes. Br. J. Plast. Surg. 55, 185–193 (2002)

    CAS  PubMed  Google Scholar 

  8. S.A. Smith, J.H. Morrissey, Polyphosphate enhances fibrin clot structure. Blood 112, 2810–2816 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. X. Ding, L. Shi, C. Liu, B. Sun, A randomized comparison study of aquacel Ag and alginate silver as skin graft donor site dressings. Burns 39, 1547–1550 (2013)

    PubMed  Google Scholar 

  10. Q.A. Ijaz, N. Abbas, M.S. Arshad, A. Hussain, Z. Javaid, Synthesis and evaluation of pH dependent polyethylene glycol-co-acrylic acid hydrogels for controlled release of venlafaxine HCl. J. Drug Deliv. Sci. Technol. 43, 221–232 (2018)

    CAS  Google Scholar 

  11. P.M. Pakdel, S.J. Peighambardoust, A review on acrylic based hydrogels and their applications in wastewater treatment. J. Environ. 217, 123–143 (2018)

    Google Scholar 

  12. K. Sharma, V. Kumar, B. Kaith, V. Kumar, S. Som, S. Kalia, H. Swart, Synthesis, characterization and water retention study of biodegradable Gum ghatti-poly (acrylic acid–aniline) hydrogels. Polym. Degrad. Stab. 111, 20–31 (2015)

    CAS  Google Scholar 

  13. K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49, 6288–6308 (2010)

    CAS  PubMed  Google Scholar 

  14. E. Ruel-Gariepy, J.-C. Leroux, In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58, 409–426 (2004)

    CAS  PubMed  Google Scholar 

  15. R.A. Scott, N.A. Peppas, Compositional effects on network structure of highly cross-linked copolymers of PEG-containing multiacrylates with acrylic acid. Macromolecules 32, 6139–6148 (1999)

    CAS  Google Scholar 

  16. I. Osman, K. Seyfullah, C. Burcu, The effect of PEG on the water absorption capacity and rate of superabsorbent copolymers based on acrylic acid. Int. J. Polym. Mater. 54, 1001–1008 (2005)

    CAS  Google Scholar 

  17. V.E. Wagner, J.T. Koberstein, J.D. Bryers, Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly (acrylic acid) co-polymers. Biomaterials 25, 2247–2263 (2004)

    CAS  PubMed  Google Scholar 

  18. J.E. Elliott, M. Macdonald, J. Nie, C.N. Bowman, Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45, 1503–1510 (2004)

    CAS  Google Scholar 

  19. A. Shefer, A.J. Grodzinsky, K.L. Prime, J.P. Busnel, Novel model networks of poly (acrylic acid): synthesis and characterization. Macromolecules 26, 5009–5014 (1993)

    CAS  Google Scholar 

  20. M.B. Mellott, K. Searcy, M.V. Pishko, Release of protein from highly cross-linked hydrogels of poly (ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials 22, 929–941 (2001)

    CAS  PubMed  Google Scholar 

  21. D.P. Browe, C. Wood, M.T. Sze, K.A. White, T. Scott, R.M. Olabisi, J.W. Freeman, Characterization and optimization of actuating poly (ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles. Polymer 117, 331–341 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Shojaee, F. Navaee, S. Jalili-Firoozinezhad, R. Faturechi, M. Majidi, S. Bonakdar, Fabrication and characterization of ovalbumin films for wound dressing applications. Mater. Sci. Eng. C 48, 158–164 (2015)

    CAS  Google Scholar 

  23. R. Lu, D. Yang, D. Cui, Z. Wang, L. Guo, Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int. J. Nanomed. 7, 2101 (2012)

    CAS  Google Scholar 

  24. Y. Mine, Recent advances in egg protein functionality in the food system. Worlds Poult. Sci. J. 58, 31–39 (2002)

    Google Scholar 

  25. F.F. Machado, J.S. Coimbra, E.E.G. Rojas, L.A. Minim, F.C. Oliveira, S.S. Rita de Cássia, Solubility and density of egg white proteins: effect of pH and saline concentration. LWT 40, 1304–1307 (2007)

    Google Scholar 

  26. A.O. Elzoghby, W.M. Samy, N.A. Elgindy, Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control Release 157, 168–182 (2012)

    CAS  PubMed  Google Scholar 

  27. J. Irache, M. Merodio, A. Arnedo, M. Camapanero, M. Mirshahi, S. Espuelas, Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev. Med. Chem. 5, 293–305 (2005)

    CAS  PubMed  Google Scholar 

  28. G.V. Patil, Biopolymer albumin for diagnosis and in drug delivery. Drug Dev. Res. 58, 219–247 (2003)

    CAS  Google Scholar 

  29. H. Tranter, R. Board, The influence of incubation temperature and pH on the antimicrobial properties of hen egg albumen. J. Appl. Bacteriol. 56, 53–61 (1984)

    CAS  PubMed  Google Scholar 

  30. T. Nojima, T. Iyoda, Egg white-based strong hydrogel via ordered protein condensation. NPG Asia Mater. 10, e460–e460 (2018)

    Google Scholar 

  31. D. Thomas, J. Prakash, K.K. Sadasivuni, K. Deshmukh, A.J. Edakkara, Surface modified zinc oxide nanoparticles as smart UV sensors. J. Electron. Mater. 48, 4726–4732 (2019)

    CAS  Google Scholar 

  32. K. Kaviyarasu, G.T. Mola, S.O. Oseni, K. Kanimozhi, C.M. Magdalane, J. Kennedy, M. Maaza, ZnO doped single wall carbon nanotube as an active medium for gas sensor and solar absorber. J. Mater. Sci. Mater. Electron. 30, 147–158 (2019)

    CAS  Google Scholar 

  33. M. Faizan, A. Faraz, S. Hayat, Effective use of zinc oxide nanoparticles through root dipping on the performance of growth, quality, photosynthesis and antioxidant system in tomato. J. Plant Biochem. Biotechnol. 28, 1–15 (2019)

    Google Scholar 

  34. Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Biomedical applications of zinc oxide nanomaterials. Curr. Mol. Med. 13, 1633–1645 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. K. Kaviyarasu, C.M. Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, E.S. Reddy, N.K. Rotte, C.S. Sharma, F. Thema, D. Letsholathebe, Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J. Photochem. Photobiol. B 173, 466–475 (2017)

    CAS  PubMed  Google Scholar 

  36. K. Kaviyarasu, N. Geetha, K. Kanimozhi, C.M. Magdalane, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, M. Maaza, In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater. Sci. Eng. C 74, 325–333 (2017)

    CAS  Google Scholar 

  37. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro. Lett. 7, 219–242 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. A.M. Díez-Pascual, C. Xu, R. Luque, Development and characterization of novel poly (ether ether ketone)/ZnO bionanocomposites. J. Mater. Chem. B 2, 3065–3078 (2014)

    PubMed  Google Scholar 

  39. W. Guo, T. Liu, R. Sun, Y. Chen, W. Zeng, Z. Wang, Hollow, porous, and yttrium functionalized ZnO nanospheres with enhanced gas-sensing performances. Sens. Actuators B 178, 53–62 (2013)

    CAS  Google Scholar 

  40. S. Mallakpour, M. Madani, Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly (amide-imide)/zinc oxide nanocomposite containing phenylalanine moieties. Bull. Mater. Sci. 35, 333–339 (2012)

    CAS  Google Scholar 

  41. G. Parthasarathy, D. Manickam, M. Venkatachalam, Antibacterial activity of Zno thin films prepared by sol-gel dip-coating method. Int. J. Res. Appl. Sci. Eng. Technol. 5, 1980–1983 (2017)

    Google Scholar 

  42. N. Guyot, S. Réhault-Godbert, C. Slugocki, G. Harichaux, V. Labas, E. Helloin, Y. Nys, Characterization of egg white antibacterial properties during the first half of incubation: a comparative study between embryonated and unfertilized eggs. Poult. Sci. 95, 2956–2970 (2016)

    CAS  PubMed  Google Scholar 

  43. J. Wu, P. Li, C. Dong, H. Jiang, B. Xue, X. Gao, M. Qin, W. Wang, B. Chen, Y. Cao, Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nat. Commun. 9, 1–11 (2018)

    Google Scholar 

  44. M.P. Daryasari, M.R. Akhgar, F. Mamashli, B. Bigdeli, M. Khoobi, Chitosan-folate coated mesoporous silica nanoparticles as a smart and pH-sensitive system for curcumin delivery. RSC Adv. 6, 105578–105588 (2016)

    CAS  Google Scholar 

  45. M. Zare, K. Namratha, K. Byrappa, D. Surendra, S. Yallappa, B. Hungund, Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J. Mater. Sci. Technol. 34, 1035–1043 (2018)

    Google Scholar 

  46. C. García-Astrain, C. Chen, M.A. Burón, T. Palomares, A. Eceiza, L. Fruk, M.Á. Corcuera, N. Gabilondo, Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromolecules 16, 1301–1310 (2015)

    PubMed  Google Scholar 

  47. J.H. Sung, M.-R. Hwang, J.O. Kim, J.H. Lee, Y.I. Kim, J.H. Kim, S.W. Chang, S.G. Jin, J.A. Kim, W.S. Lyoo, Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int. J. Pharm. 392, 232–240 (2010)

    CAS  PubMed  Google Scholar 

  48. E.P. Azevedo, T.D. Saldanha, M.V. Navarro, A.C. Medeiros, M.F. Ginani, F.N. Raffin, Mechanical properties and release studies of chitosan films impregnated with silver sulfadiazine. J. Appl. Polym. Sci. 102, 3462–3470 (2006)

    CAS  Google Scholar 

  49. P. Sudheesh Kumar, V.-K. Lakshmanan, T. Anilkumar, C. Ramya, P. Reshmi, A. Unnikrishnan, S.V. Nair, R. Jayakumar, Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 4, 2618–2629 (2012)

    CAS  Google Scholar 

  50. B. Singh, L. Pal, Sterculia crosslinked PVA and PVA-poly (AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. J. Mech. Behav. Biomed. Mater. 9, 9–21 (2012)

    CAS  PubMed  Google Scholar 

  51. S. Nair, A. Sasidharan, V.D. Rani, D. Menon, S. Nair, K. Manzoor, S. Raina, Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 20, 235 (2009)

    Google Scholar 

  52. A. Sasidharan, P. Chandran, D. Menon, S. Raman, S. Nair, M. Koyakutty, Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis. Nanoscale 3, 3657–3669 (2011)

    CAS  PubMed  Google Scholar 

  53. K. Pilakasiri, P. Molee, D. Sringernyuang, N. Sangjun, S. Channasanon, S. Tanodekaew, Efficacy of chitin-PAA-GTMAC gel in promoting wound healing: animal study. J. Mater. Sci. Mater. Med. 22, 2497–2504 (2011)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the Research Council of Tehran University of Medical Sciences (Grant Number: 35614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi khoobi.

Ethics declarations

Conflict of interest

The authors of this manuscript do not have any financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

khoobi, M., Moghimi, M., Motlagh, G.H. et al. Cross-Linked Poly(acrylic acid) Hydrogel Loaded with Zinc Oxide Nanoparticles and Egg White Proteins for Antimicrobial Application. J Inorg Organomet Polym 30, 5234–5243 (2020). https://doi.org/10.1007/s10904-020-01619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01619-1

Keywords

Navigation