Skip to main content

Advertisement

Log in

A Review on Antibacterial Properties of Biologically Synthesized Zinc Oxide Nanostructures

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Anti-bacterial activity of biologically synthesized zinc oxide (ZnO) nanostructures has engrossed great attention around the globe due to distinctive nanotechnological applications. Biogenic ZnO nanostructures have prominent anti-bacterial properties as compared to bulk because small sized nanostructures exhibit larger surface area leading to improved particle surface-reactivity. This study reveals that biologically synthesized ZnO nanostructures are bio-compatible, stable and have longer shelf life due to presence of phytochemicals which acts as stabilizing and capping agents during synthesis process. The anti-bacterial mechanism of ZnO nanostructures includes production of reactive oxygen species (ROS) such as hydrogen peroxide H2O2, OH and O2−2. The ROS provides major toxicity mechanism which includes destruction of cell wall due to interaction of ZnO nanostructures. Sometimes, ZnO nanostructures have increased anti-bacterial activity due to surface imperfections and ROS generation in dark. Interaction between ZnO nanostructures and bacterial cell causes mitochondrial weakness, intra-cellular outflow, and oxidative stress which eventually inhibits bacterial growth and kills the whole cell. This review describes anti-bacterial activity of biologically synthesized ZnO nanostructures by previously reported literature and tests used to examine anti-bacterial activity, influence of UV illumination, ZnO unique features i.e. size, concentration, morphology, and defects. Furthermore, it also presents significant anti-bacterial applications of ZnO nanostructures particularly in food packaging industry, pharmaceutical industry and other health care applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Iqbal et al., Facile synthesis and antimicrobial activity of CdS-Ag2S nanocomposites. Bioorg. Chem. 90, 103064 (2019)

    CAS  PubMed  Google Scholar 

  2. A.V. Kachynski et al., Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J. Phys. Chem. C 112(29), 10721–10724 (2008)

    CAS  Google Scholar 

  3. R. Laiho, L. Vlasenko, M. Vlasenko, Optical detection of magnetic resonance and electron paramagnetic resonance study of the oxygen vacancy and lead donors in ZnO. J. Appl. Phys. 103(12), 123709 (2008)

    Google Scholar 

  4. B.D. Yuhas, P. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131(10), 3756–3761 (2009)

    CAS  PubMed  Google Scholar 

  5. Q. Li et al., Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42(18), 4591–4602 (2008)

    CAS  Google Scholar 

  6. N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mater 9, 035004 (2008)

    PubMed  PubMed Central  Google Scholar 

  7. C.G. Spencer et al., Antimicrobial effects of zinc oxide in an orthodontic bonding agent. Angle. Orthod. 79(2), 317–322 (2009)

    PubMed  Google Scholar 

  8. A. Eslami et al., Photocatalytic degradation of methyl tert-butyl ether (MTBE) in contaminated water by ZnO nanoparticles. J. Chem. Technol. Biotechnol. 83(11), 1447–1453 (2008)

    CAS  Google Scholar 

  9. A.A. Lawrence, J.T.J. Prakash, A review on nanotechnology and plant mediated metal nanoparticles and its applications

  10. T. Iqbal et al., Influence of manganese on structural, dielectric and magnetic properties of ZnO nanoparticles. Dig. J. Nanomater. Biostruct. 11(3), 899–908 (2016)

    Google Scholar 

  11. J. Song, J. Zhou, Z.L. Wang, Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Letter 6(8), 1656–1662 (2006)

    CAS  Google Scholar 

  12. Z.L. Wang, Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu. Rev. Phys. Chem. 55, 159–196 (2004)

    CAS  PubMed  Google Scholar 

  13. R. Young, Health issues of the 21st century: infection antimicrobial drug resistance, distance learning and technology. J. Med. Microbiol. 45(2), 79–80 (1996)

    CAS  PubMed  Google Scholar 

  14. H. Oveisi et al., Unusual antibacterial property of mesoporous titania films: drastic improvement by controlling surface area and crystallinity. Chemistry 5(9), 1978–1983 (2010)

    CAS  Google Scholar 

  15. K. Tam et al., Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin solid films 516(18), 6167–6174 (2008)

    CAS  Google Scholar 

  16. T. Bintsis, E. Litopoulou-Tzanetaki, R.K. Robinson, Existing and potential applications of ultraviolet light in the food industry: a critical review. J. Sci. Food Agric. 80(6), 637–645 (2000)

    CAS  PubMed  Google Scholar 

  17. R. Brayner et al., Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006)

    CAS  PubMed  Google Scholar 

  18. M. Ijaz et al., A review on Ag-nanostructures for enhancement in shelf time of fruits. J. Inorg. Organomet. Polym. Materi. 60, 1–8 (2020)

    Google Scholar 

  19. K.L. Kotloff et al., Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 77(8), 651 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011)

    CAS  PubMed  Google Scholar 

  21. L. Zhang et al., Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007)

    Google Scholar 

  22. K.M. Kumar et al., Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochim. Acta A 104, 171–174 (2013)

    Google Scholar 

  23. A. Lipovsky et al., Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22(10), 105101 (2011)

    PubMed  Google Scholar 

  24. S. Vlad et al., Antifungal behaviour of polyurethane membranes with zinc oxide nanoparticles. Dig. J. Nanomater. Bios 7, 51–58 (2012)

    Google Scholar 

  25. J. You, Y. Zhang, Z. Hu, Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. B 85(2), 161–167 (2011)

    CAS  Google Scholar 

  26. M. Sultan et al., Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions. Superlattices Microstruct. 112, 210–217 (2017)

    CAS  Google Scholar 

  27. G.-C. Yi, C. Wang, W.I. Park, ZnO nanorods: synthesis, characterization and applications. Semicond. Sci. Technol. 20(4), S22 (2005)

    CAS  Google Scholar 

  28. J. Sawai et al., Antibacterial characteristics of magnesium oxide powder. J. Chem. Eng. Jpn. 29, 556 (1996)

    Google Scholar 

  29. P.J.P. Espitia et al., Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5(5), 1447–1464 (2012)

    CAS  Google Scholar 

  30. R. Kumar et al., Antimicrobial properties of ZnO nanomaterials: a review. Ceram. Int. 43(5), 3940–3961 (2017)

    CAS  Google Scholar 

  31. N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles: an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008)

    PubMed  PubMed Central  Google Scholar 

  32. P. Gajjar et al., Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J. Biol. Eng. 3(1), 9 (2009)

    PubMed  PubMed Central  Google Scholar 

  33. Z. Emami-Karvani, P. Chehrazi, Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr. J. Microbiol. Res. 5(12), 1368–1373 (2011)

    CAS  Google Scholar 

  34. Z. Song et al., Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomed. Opt. Express 2(12), 3321–3333 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. B.P. Bastakoti et al., Polymeric micelle assembly for preparation of large-sized mesoporous metal oxides with various compositions. Langmuir 30(2), 651–659 (2014)

    CAS  PubMed  Google Scholar 

  36. S. Bhattacharyya, A. Gedanken, Microwave-assisted insertion of silver nanoparticles into 3-D mesoporous zinc oxide nanocomposites and nanorods. J. Phys. Chem. C 112(3), 659–665 (2008)

    CAS  Google Scholar 

  37. T.W. Kim et al., Chemical bonding character and physicochemical properties of mesoporous zinc oxide-layered titanate nanocomposites. J. Phys. Chem. C 111(4), 1658–1664 (2007)

    CAS  Google Scholar 

  38. B.P. Bastakoti et al., Polymeric micelle assembly with inorganic nanosheets for construction of mesoporous architectures with crystallized walls. Angew. Chem. Int. Ed. 54(14), 4222–4225 (2015)

    CAS  Google Scholar 

  39. M.A. Ali et al., Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 7(16), 7234–7245 (2015)

    CAS  PubMed  Google Scholar 

  40. K.M. Reddy et al., Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902 (2007)

    PubMed Central  Google Scholar 

  41. Y. Liu et al., Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 107(4), 1193–1201 (2009)

    CAS  PubMed  Google Scholar 

  42. G. Fu et al., TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 109, 8889–8898 (2005)

    CAS  PubMed  Google Scholar 

  43. D.M. Berube, Rhetorical gamesmanship in the nano debates over sunscreens and nanoparticles. J. Nanopart. Res. 10(1), 23–37 (2008)

    CAS  Google Scholar 

  44. R.H. Fang et al., Cell membrane coating nanotechnology. Adv. Mater. 30(23), 1706759 (2018)

    Google Scholar 

  45. X. Zhu et al., Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health A 43(3), 278–284 (2008)

    CAS  Google Scholar 

  46. L.-E. Shi et al., Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit. Contam. A 31(2), 173–186 (2014)

    CAS  Google Scholar 

  47. M. Premanathan et al., Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 7(2), 184–192 (2011)

    CAS  Google Scholar 

  48. H.M. de Azeredo, Antimicrobial nanostructures in food packaging. Trends Food Sci. Technol. 30(1), 56–69 (2013)

    Google Scholar 

  49. A. Fortuny et al., Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. J. Hazard. Mater. 64(2), 181–193 (1999)

    CAS  PubMed  Google Scholar 

  50. S. Rana et al., Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomater. 2(4), 421–432 (2006)

    CAS  PubMed  Google Scholar 

  51. N. Khalid et al., Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 45(17), 21430–21435 (2019)

    CAS  Google Scholar 

  52. J. Zhang. Silver-coated zinc oxide nanoantibacterial synthesis and antibacterial activity characterization. In: Proceedings of 2011 International Conference on Electronics and Optoelectronics. 2011. IEEE

  53. C. Jayaseelan et al., Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta Part A 90, 78–84 (2012)

    CAS  Google Scholar 

  54. P. Sutradhar, M. Saha, Synthesis of zinc oxide nanoparticles using tea leaf extract and its application for solar cell. Bull. Mater. Sci. 38(3), 653–657 (2015)

    CAS  Google Scholar 

  55. J. Pulit-Prociak et al., Functionalization of textiles with silver and zinc oxide nanoparticles. Appl. Surf. Sci. 385, 543–553 (2016)

    CAS  Google Scholar 

  56. O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001)

    CAS  Google Scholar 

  57. P.K. Stoimenov et al., Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17), 6679–6686 (2002)

    CAS  Google Scholar 

  58. M. Roselli et al., Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J. Nutr. 133(12), 4077–4082 (2003)

    CAS  PubMed  Google Scholar 

  59. M. Fang et al., Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents 27(6), 513–517 (2006)

    CAS  PubMed  Google Scholar 

  60. N. Jones et al., Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008)

    CAS  PubMed  Google Scholar 

  61. A.C. Manna, Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles. In: Nano-antimicrobials. (Springer, Berlin, 2012). pp. 151-180.

  62. J. Bardeen, F. Blatt, L. Hall, Photoconductivity Conference (Wiley, New York, 1956)

    Google Scholar 

  63. R.S. Devi, R. Gayathri, Green synthesis of zinc oxide nanoparticles by using Hibiscus rosasinensis. Int. J. Curr. Eng. Technol. 4(4), 2444–2446 (2014)

    Google Scholar 

  64. O. Nava et al., Influence of Camellia sinensis extract on zinc oxide nanoparticle green synthesis. J. Mol. Struct. 1134, 121–125 (2017)

    CAS  Google Scholar 

  65. P. Ramesh, A. Rajendran, M. Meenakshisundaram, Green syntheis of zinc oxide nanoparticles using flower extract Cassia auriculata. J. NanoSci. NanoTechnol. 2(1), 41–45 (2014)

    Google Scholar 

  66. E. Varghese, M. George, Green synthesis of zinc oxide nanoparticles. Int. J. Adv. Res. Sci. Eng. 4(1), 307–314 (2015)

    Google Scholar 

  67. R. Dobrucka, Facile synthesis of trimetallic nanoparticles Au/CuO/ZnO using Vitex agnus-Castus extract and their activity in degradation of organic dyes. Int. J. Environ. Anal. Chem. 2019, 1–12 (2019)

    Google Scholar 

  68. J. Singh et al., ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16(1), 84 (2018)

    CAS  Google Scholar 

  69. S.P. Chandran et al., Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22(2), 577–583 (2006)

    CAS  PubMed  Google Scholar 

  70. M.S. Akhtar, J. Panwar, Y.-S. Yun, Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem. Eng. 1(6), 591–602 (2013)

    CAS  Google Scholar 

  71. O.V. Kharissova et al., The greener synthesis of nanoparticles. Trends Biotechnol. 31(4), 240–248 (2013)

    CAS  PubMed  Google Scholar 

  72. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles. Nanomedicine 6(2), 257–262 (2010)

    CAS  PubMed  Google Scholar 

  73. J. Qu et al., Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ. Pollut. 159(7), 1783–1788 (2011)

    CAS  PubMed  Google Scholar 

  74. G. Sangeetha, S. Rajeshwari, R. Venckatesh, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull. 46(12), 2560–2566 (2011)

    CAS  Google Scholar 

  75. D. Sagar Raut, R.T. Thorat, Green synthesis of zinc oxide (ZnO) nanoparticles using Ocimum tenuiflorum leaves. Int. J. Sci. Res. 4(5), 1225–1228 (2015)

    Google Scholar 

  76. G. Madhumitha, G. Elango, S.M. Roopan, Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl. Microbiol. Biotechnol. 100(2), 571–581 (2016)

    CAS  PubMed  Google Scholar 

  77. M. Das, S. Chatterjee, Green Synthesis of Metal/Metal Oxide Nanoparticles toward Tiomedical Applications: Boon or Bane, in Green Synthesis, Characterization and Applications of Nanoparticles (Elsevier, Amsterdam, 2019), pp. 265–301

    Google Scholar 

  78. S. Akbar et al., An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential. Inorg. Nano Met. Chem. 50(4), 257–271 (2020)

    CAS  Google Scholar 

  79. L. Raj, E. Jayalakshmy, Biosynthesis and characterization of zinc oxide nanoparticles using root extract of Zingiber officinale. Oriental journal of chemistry 31(1), 51–56 (2015)

    Google Scholar 

  80. M. Heinlaan et al., Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7), 1308–1316 (2008)

    CAS  PubMed  Google Scholar 

  81. A. Thill et al., Cytotoxicity of CeO2 nanoparticles for Escherichia coli. physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40(19), 6151–6156 (2006)

    CAS  PubMed  Google Scholar 

  82. J. Sawai et al., Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86(5), 521–522 (1998)

    CAS  Google Scholar 

  83. L. Zhang et al., ZnO nanofluids: a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008)

    CAS  Google Scholar 

  84. R. Jalal et al., ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 121(1–2), 198–201 (2010)

    CAS  Google Scholar 

  85. T. Gordon et al., Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A 374(1–3), 1–8 (2011)

    CAS  Google Scholar 

  86. M. Dryden et al., A multi-centre clinical evaluation of reactive oxygen topical wound gel in 114 wounds. J. Wound Care 25(3), 140–146 (2016)

    CAS  PubMed  Google Scholar 

  87. M. Dryden, Reactive oxygen species: a novel antimicrobial. Int. J. Antimicrob. Agents 51(3), 299–303 (2018)

    CAS  PubMed  Google Scholar 

  88. M. Dryden et al., Hot topics in reactive oxygen therapy: antimicrobial and immunological mechanisms, safety and clinical applications. J. Glob. Antimicrob. Resist. 8, 194–198 (2017)

    PubMed  Google Scholar 

  89. S. Senthilkumar, T. Sivakumar, Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci. 6(6), 461–465 (2014)

    Google Scholar 

  90. A. Raja et al., Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B 181, 53–58 (2018)

    CAS  PubMed  Google Scholar 

  91. R.K. Dutta, B.P. Nenavathu, M.K. Gangishetty, Correlation between defects in capped ZnO nanoparticles and their antibacterial activity. J. Photochem. Photobiol. B 126, 105–111 (2013)

    CAS  PubMed  Google Scholar 

  92. K. Lingaraju et al., Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl. Nanosci. 6(5), 703–710 (2016)

    CAS  Google Scholar 

  93. K. Elumalai, S. Velmurugan, Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 345, 329–336 (2015)

    CAS  Google Scholar 

  94. T. Jin et al., Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J. Food Sci. 74(1), M46–M52 (2009)

    CAS  PubMed  Google Scholar 

  95. J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 54(2), 177–182 (2003)

    CAS  PubMed  Google Scholar 

  96. T. Ohira et al., Antibacterial activity of ZnO powder with crystallographic orientation. J. Mater. Sci.: Mater. Med. 19(3), 1407–1412 (2008)

    CAS  Google Scholar 

  97. V. Mishra, R. Sharma, Green synthesis of zinc oxide nanoparticles using fresh peels extract of Punica granatum and its antimicrobial activities. Int. J. Pharm. Res. Health Sci. 3(3), 694–699 (2015)

    CAS  Google Scholar 

  98. R. Ishwarya et al., Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J. Photochem. Photobiol. B 178, 249–258 (2018)

    CAS  PubMed  Google Scholar 

  99. Y.O. Cheryl-lynn, M.J. Walker, A.G. McEwan, Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Sci. Rep. 5, 10799 (2015)

    Google Scholar 

  100. N. Jayaprakash et al., Green synthesis of Ag nanoparticles using tamarind fruit extract for the antibacterial studies. J. Photochem. Photobiol. B 169, 178–185 (2017)

    CAS  PubMed  Google Scholar 

  101. X. Wang et al., A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem. Commun. 42, 4419–4421 (2007)

    Google Scholar 

  102. M. Banoee et al., ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J. Biomed. Mater. Res. B 93(2), 557–561 (2010)

    Google Scholar 

  103. S. Vijayakumar et al., Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater. Sci. Semicond. Process. 82, 39–45 (2018)

    CAS  Google Scholar 

  104. N.J. Vickers, Animal communication: when i’m calling you, will you answer too? Curr. Biol. 27(14), R713–R715 (2017)

    CAS  PubMed  Google Scholar 

  105. D. Sardella, R. Gatt, V.P. Valdramidis, Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res. Int. 101, 274–279 (2017)

    CAS  PubMed  Google Scholar 

  106. M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45(5), 1977–1983 (2011)

    CAS  PubMed  Google Scholar 

  107. H. Ma et al., Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 28(6), 1324–1330 (2009)

    CAS  PubMed  Google Scholar 

  108. A. Nel et al., Toxic potential of materials at the nanolevel. Science 311(5761), 622–627 (2006)

    CAS  Google Scholar 

  109. T. Xia et al., Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10), 2121–2134 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  110. X. Bellanger et al., Stability and toxicity of ZnO quantum dots: interplay between nanoparticles and bacteria. J. Hazard. Mater. 283, 110–116 (2015)

    CAS  PubMed  Google Scholar 

  111. A.E. Nel et al., Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009)

    CAS  PubMed  Google Scholar 

  112. A. Russell, W. Hugo, Antimicrobial activity and action of silver, in Progress in Medicinal Chemistry. (Elsevier, Amsterdam, 1994), pp. 351–370

    Google Scholar 

  113. S. Shanmugam, B. Viswanathan, T. Varadarajan, A novel single step chemical route for noble metal nanoparticles embedded organic–inorganic composite films. Mater. Chem. Phys. 95(1), 51–55 (2006)

    CAS  Google Scholar 

  114. D.M. Blake et al., Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separ. Purif. Methods 28(1), 1–50 (1999)

    CAS  Google Scholar 

  115. E.A.S. Dimapilis et al., Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 28(2), 47–56 (2018)

    CAS  Google Scholar 

  116. K. Eboigbodin et al., Bacterial quorum sensing and cell surface electrokinetic properties. Appl. Microbiol. Biotechnol. 73(3), 669–675 (2006)

    CAS  PubMed  Google Scholar 

  117. G. Applerot et al., Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Func. Mater. 19(6), 842–852 (2009)

    CAS  Google Scholar 

  118. G. Applerot et al., Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Appl. Surf. Sci. 256(3), S3–S8 (2009)

    CAS  Google Scholar 

  119. A. Lipovsky et al., EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C 113(36), 15997–16001 (2009)

    CAS  Google Scholar 

  120. L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006)

    CAS  PubMed  Google Scholar 

  121. K. Hirota et al., Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 36(2), 497–506 (2010)

    CAS  Google Scholar 

  122. J.M. Wu, W.T. Kao, Heterojunction nanowires of Ag x Zn1–x O–ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J. Phys. Chem. C 119(3), 1433–1441 (2015)

    CAS  Google Scholar 

  123. V. Lakshmi Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33), 9155–9162 (2015)

    CAS  PubMed  Google Scholar 

  124. T. Bhuyan et al., Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61 (2015)

    CAS  Google Scholar 

  125. C. Anupama, A. Kaphle, G. Nagaraju, Aegle marmelos assisted facile combustion synthesis of multifunctional ZnO nanoparticles: study of their photoluminescence, photo catalytic and antimicrobial activities. J. Mater. Sci.: Mater. Electron. 29(5), 4238–4249 (2018)

    CAS  Google Scholar 

  126. G. Bhumi, N. Savithramma, Biological synthesis of zinc oxide nanoparticles from Catharanthus roseus (L.) G. Don. Leaf extract and validation for antibacterial activity. Int. J. Drug Dev. Res. 6(1), 208–214 (2014)

    Google Scholar 

  127. M. Gupta et al., Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front. Microbiol. 9, 2030 (2018)

    PubMed  PubMed Central  Google Scholar 

  128. P. Nagajyothi et al., Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis rhizoma. Bioorg. Med. Chem. Lett. 24(17), 4298–4303 (2014)

    CAS  PubMed  Google Scholar 

  129. N. Bala et al., Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 5(7), 4993–5003 (2015)

    CAS  Google Scholar 

  130. P. Nagajyothi, T. Sreekanth, Green synthesis of metallic and metal oxide nanoparticles and their antibacterial activities, in Green Processes for Nanotechnology. (Springer, Berlin, 2015), pp. 99–117

    Google Scholar 

  131. S. Divyapriya, C. Sowmia, S. Sasikala, Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murraya Koenigii. World J. Pharm. Pharm. Sci 3(12), 1635–1645 (2014)

    Google Scholar 

  132. R. Sivaraj et al. Biogenic zinc oxide nanoparticles synthesis using Tabernaemontana Divaricate leaf extract and its anticancer activity against MCF-7 breast cancer cell Lines. In: International Conference on Advances in Agricultural, Biological & Environmental Sciences 2014. 2014

  133. D. Suresh et al., Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process. 31, 446–454 (2015)

    CAS  Google Scholar 

  134. R. Dobrucka, J. Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 23(4), 517–523 (2016)

    CAS  PubMed  Google Scholar 

  135. A. Chaudhary et al., Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract. SN Appl. Sci. 1(1), 136 (2019)

    Google Scholar 

  136. A.B. Moghaddam et al., Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules 22(6), 872 (2017)

    Google Scholar 

  137. N. Elavarasan et al., Evaluation of photocatalytic activity, antibacterial and cytotoxic effects of green synthesized ZnO nanoparticles by Sechium edule leaf extract. Res. Chem. Intermed. 43(5), 3361–3376 (2017)

    CAS  Google Scholar 

  138. T. Surendra et al., Vegetable peel waste for the production of ZnO nanoparticles and its toxicological efficiency, antifungal, hemolytic, and antibacterial activities. Nanoscale Res. Lett. 11(1), 546 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  139. A. Geetha et al., Green synthesis of antibacterial zinc oxide nanoparticles using biopolymer Azadirachtaindica gum. Orient. J. Chem. 32(2), 955–963 (2016)

    CAS  Google Scholar 

  140. R. Dobrucka, J. Dlugaszewska, M. Kaczmarek, Cytotoxic and antimicrobial effects of biosynthesized ZnO nanoparticles using of Chelidonium majus extract. Biomed. Microdevices 20(1), 5 (2018)

    Google Scholar 

  141. O. Kahraman et al., Synthesis, characterization, antimicrobial and electrochemical activities of zinc oxide nanoparticles obtained from Sarcopoterium spinosum (L.) spach leaf extract. Materials Research Express 5(11), 115017 (2018)

    Google Scholar 

  142. M. Mankad et al., Green synthesis of zinc oxide nanoparticles using Azadirachta indica A. Juss. leaves extractand its antibacterial activity against Xanthomonas orzyae pv. oryzae. Annals of Phytomedicine 5(2), 76–86 (2016)

    CAS  Google Scholar 

  143. P. Nagajyothi et al., Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol., B 146, 10–17 (2015)

    CAS  Google Scholar 

  144. A. Datta et al., Green synthesis of zinc oxide nanoparticles using parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J. Biotechnol. Biomater 7, 3 (2017)

    Google Scholar 

  145. P. Velmurugan et al., Eco-friendly approach towards green synthesis of zinc oxide nanocrystals and its potential applications. Artif. Cells Nanomed. Biotechnol. 44(6), 1537–1543 (2016)

    CAS  PubMed  Google Scholar 

  146. S. Ambika, M. Sundrarajan, Synthesis of β-cyclodextrin/ZnO nanocomposites and its improved antibacterial activity on cotton fabric. World J. Pharm. Pharm. Sci 3(4), 751–761 (2014)

    Google Scholar 

  147. S. Ambika, M. Sundrarajan, Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J. Photochem. Photobiol. B 146, 52–57 (2015)

    CAS  PubMed  Google Scholar 

  148. M. Ramesh, M. Anbuvannan, G. Viruthagiri, Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A 136, 864–870 (2015)

    CAS  Google Scholar 

  149. V. Anbukkarasi, R. Srinivasan, N. Elangovan, Antimicrobial activity of green synthesized zinc oxide nanoparticles from Emblica officinalis. Int. J. Pharm. Sci. Rev. Res 33(2), 110–115 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohsin Ijaz or Tahir Iqbal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijaz, M., Zafar, M., Islam, A. et al. A Review on Antibacterial Properties of Biologically Synthesized Zinc Oxide Nanostructures. J Inorg Organomet Polym 30, 2815–2826 (2020). https://doi.org/10.1007/s10904-020-01603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01603-9

Keywords

Navigation