Skip to main content
Log in

Pd/[C2NH2mim][Br] Thin Film Versus Pd/[C8mim][Cl] or Pd/[C8mim][BF4]: Catalytic Applications in Electrooxidation of Methanol, p-Nitrophenol Reduction and C–C Coupling Reaction

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, different ionic liquids including 1-aminoethyl-3-methyl-imidazolium bromide [C2NH2mim][Br] (1), 1-methyl-3-octylimidazolium chloride [C8mim][Cl] (2) and 1-methyl-3-octylimidazolium tetrafluoroborate [C8mim][BF4] (3) were applied to stabilize Pd nanoparticles (NPs) at toluene/water interface as thin films. Field emission-scanning electron microscopy (FE-SEM) images showed puckered chains of ionic liquid (1) around the Pd NPs as flower nanostructures. Transmission electron microscopy (TEM) image of Pd/1 showed clearly core–shell nanostructures. Furthermore, applications of Pd/1, Pd/2 and Pd/3 were investigated in the Suzuki–Miyaura C–C coupling reaction in the presence and absence of ultrasonic waves, hydrogenation catalysis of p-nitrophenol reduction and methanol oxidation reaction. Interestingly, Jf (forwarding current density due to methanol oxidation) was observed only for Pd/1. We believe that interactions of –NH2 and imidazolium groups of ionic liquid 1 with Pd particles are very important in producing of puckered shells around the Pd NPs. Injection of electron density from –NH2 group and Br of ionic liquid 1 to Pd content tends to Pd be softer than other ionic liquids (2 or 3). This effect weakens the strength of Pd–O and facilitates the intermolecular reductive elimination between Pd–O and Pd–C≡O in rate-determining step of methanol oxidation to produce CO2 product. However, electron releasing group accelerates the increasement in negative charge density of metal accelerates intramolecular or intermolecular reduction elimination.

Graphic Abstract

Stabilization of Pd nanoparticles from organometallic precursor in the presence of various ionic liquids is investigated. The obtained Pd/ionic liquid thin films were applied in catalytic reactions such as Suzuki–Miyaura C–C coupling reaction, p-nitrophenol reduction and methanol oxidation process for fuel cells. In spite of Pd nanoparticle thin films used for methanol oxidation reaction that exhibit no considerable methanol oxidation, these catalysts exhibit good electrocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Scheme 4
Fig. 9
Fig. 10
Scheme 5
Fig. 11
Scheme 6
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. S.M. Navarro Gallon, E. Alpaslan, M. Wang, P. Larese-Casanova, M.E. Londono, L. Atehortua, J.J. Pavon, T.J. Webster, Mater. Sci. Eng. C 99, 685–695 (2019)

    CAS  Google Scholar 

  2. ASh Shamsabadi, H. Tavanai, M. Ranjbar, M. Bazarganipour, J. Inorg. Organomet. Polym. Mater. 30, 695–705 (2020)

    CAS  Google Scholar 

  3. M. Chauhan, C. Feizullayeva, K. Melepura, S. Matam, A. Patel, Q. Johnson, B.P.S. Chauhan, J. Inorg. Organomet. Polym. Mater. 24, 994–1000 (2014)

    CAS  Google Scholar 

  4. A. Miri, M. Khatami, M. Sarani, J. Inorg. Organomet. Polym. Mater. 30, 767–774 (2020)

    CAS  Google Scholar 

  5. T. Amaya, T. Isaji, M. Abe, T. Hirao, J. Inorg. Organomet. Polym. Mater. 25, 145–152 (2015)

    CAS  Google Scholar 

  6. J. Polte, Cryst. Eng. Comm. 17, 6809–6830 (2015)

    CAS  Google Scholar 

  7. X. Chen, M. Cheng, D. Chen, R. Wang, A.C.S. Appl, Mater. Interfaces 8, 3892–3900 (2016)

    CAS  Google Scholar 

  8. K. Piradashvili, E.M. Alexandrino, F.R. Wurm, K. Landfester, Chem. Rev. 116, 2141–2169 (2016)

    CAS  PubMed  Google Scholar 

  9. F. Ozel, E. Aslan, A. Sarilmaz, I.H. Patir, A.C.S. Appl, Mater. Interfaces 8, 25881–25887 (2016)

    CAS  Google Scholar 

  10. S.G. Booth, R.A.W. Dryfe, J. Phys. Chem. C 119, 23295–23309 (2015)

    CAS  Google Scholar 

  11. S.J. Hoseini, M. Rashidi, M. Bahrami, J. Mater. Chem. 21, 16170–16176 (2011)

    CAS  Google Scholar 

  12. S.J. Hoseini, M. Dehghani, H. Nasrabadi, Catal. Sci. Technol. 4, 1078–1083 (2014)

    Google Scholar 

  13. S. Saberi Sarmoor, S.J. Hoseini, R. Hashemi Fath, M. Roushani, M. Bahrami, Appl. Organomet. Chem. 32, e3979–e3987 (2018)

    Google Scholar 

  14. S.J. Hoseini, N. Mousavi, M. Roushani, L. Mosadeghi, M. Bahrami, M. Rashidi, Dalton Trans. 42, 12364–12369 (2013)

    CAS  PubMed  Google Scholar 

  15. S.J. Hoseini, M. Bahrami, M. Zanganeh, M. Roushani, M. Rashidi, RSC Adv. 6, 45753–45767 (2016)

    CAS  Google Scholar 

  16. S.J. Hoseini, M. Bahrami, M. Roushani, RSC Adv. 4, 46992–46999 (2014)

    CAS  Google Scholar 

  17. Z.H. Han, B. Yang, Y. Qi, J. Cumings, Ultrasonics 51, 485–488 (2011)

    CAS  PubMed  Google Scholar 

  18. J. Kundu, D. Pradhan, A.C.S. Appl, Mater. Interfaces 6, 1823–1834 (2014)

    CAS  Google Scholar 

  19. B.P. Binks, Colloidal Particles at Liquid Interfaces (Cambridge University Press, New York, 2006)

    Google Scholar 

  20. A.S. Kabalnov, E.D. Shchukin, Adv. Colloid Interface Sci. 38, 69–97 (1992)

    CAS  Google Scholar 

  21. A. Glotov, A. Stavitskaya, Y. Chudakov, E. Ivanov, W. Huang, V. Vinokurov, A. Zolotukhina, A. Maximov, E. Karakhanov, Y. Lvov, Bull. Chem. Soc. Jpn. 92, 61–69 (2019)

    CAS  Google Scholar 

  22. R. Schomaecker, R. Strey, J. Phys. Chem. 98, 3908–3912 (1994)

    CAS  Google Scholar 

  23. C. Janiak, Catalysis in Ionic Liquids: From Catalyst Synthesis to Application (Science, Germany, 2014)

    Google Scholar 

  24. F. Han, S. Li, R. Yin, H. Liu, L. Xu, Colloids Surf. A 315, 210–216 (2008)

    CAS  Google Scholar 

  25. Y. Zhou, J. Qu, A.C.S. Appl, Mater. Interfaces 9, 3209–3222 (2017)

    CAS  Google Scholar 

  26. X. Zhong, Z. Liu, D. Cao, J. Phys. Chem. B 115, 10027–10040 (2011)

    CAS  PubMed  Google Scholar 

  27. S. Zhang, Y. Zhang, Y. Wang, S. Liu, Y. Deng, Phys. Chem. Chem. Phys. 14, 5132–5138 (2012)

    CAS  PubMed  Google Scholar 

  28. A. Biffis, M. Zecca, M. Basato, J. Mol. Catal. A 173, 249–274 (2001)

    CAS  Google Scholar 

  29. M. Perez-Lorenzo, J. Phys. Chem. Lett. 3, 167–174 (2012)

    CAS  Google Scholar 

  30. T.H. Rehm, A. Bogdan, C. Hofmann, P. Lob, Z.B. Shifrina, D.G. Morgan, L.M. Bronstein, ACS Appl. Mater. Interfaces 7, 27254–27261 (2015)

    CAS  PubMed  Google Scholar 

  31. T. Swathi, G. Buvaneswari, Mater. Lett. 62, 3900–3902 (2008)

    CAS  Google Scholar 

  32. C. Huang, W. Ye, Q. Liu, X. Qiu, ACS Appl. Mater. Interfaces 6, 14469–14476 (2014)

    CAS  PubMed  Google Scholar 

  33. D. Formenti, F. Ferretti, F.K. Scharnagl, M. Beller, Chem. Rev. 119, 2611–2680 (2019)

    CAS  PubMed  Google Scholar 

  34. S. Zhong, Q. Xu, Bull. Chem. Soc. Jpn. 91, 1606–1617 (2018)

    CAS  Google Scholar 

  35. X. Zhang, J. Zhu, C.S. Tiwary, Z. Ma, H. Huang, J. Zhang, Z. Lu, W. Huang, Y. Wu, ACS Appl. Mater. Interfaces 8, 10858–10865 (2016)

    CAS  PubMed  Google Scholar 

  36. S. Fu, C. Zhu, D. Du, Y. Lin, ACS Appl. Mater. Interfaces 8, 6110–6116 (2016)

    CAS  PubMed  Google Scholar 

  37. J.N. Tiwari, W.G. Lee, S. Sultan, M. Yousuf, A.M. Harzandi, V. Vij, K.S. Kim, ACS Nano 11, 7729–7735 (2017)

    CAS  PubMed  Google Scholar 

  38. H. You, F. Zhang, Z. Liu, J. Fang, ACS Catal. 4, 2829–2835 (2014)

    CAS  Google Scholar 

  39. N. Mansor, T.S. Miller, I. Dedigama, A.B. Jorge, J. Jia, V. Brazdova, C. Mattevi, C. Gibbs, D. Hodgson, P.R. Shearing, C.A. Howard, F. Cora, M. Shaffer, D.J.L. Brett, P.F. McMillan, Electrochim. Acta 222, 44–57 (2016)

    CAS  Google Scholar 

  40. Z. Yang, X. Zhou, H. Nie, Z. Yao, S. Huang, ACS Appl. Mater. Interfaces 3, 2601–2606 (2011)

    CAS  PubMed  Google Scholar 

  41. D.H. Nagaraju, S. Devaraj, P. Balaya, Mater. Res. Bull. 60, 150–157 (2014)

    CAS  Google Scholar 

  42. R.K. Pandey, V. Lakshminarayanan, J. Phys. Chem. C 113, 21596–21603 (2009)

    CAS  Google Scholar 

  43. Z. Yin, H. Zheng, D. Ma, X. Bao, J. Phys. Chem. C 113, 1001–1005 (2009)

    CAS  Google Scholar 

  44. S.J. Hoseini, M. Bahrami, M. Dehghani, RSC Adv. 4, 13796–13804 (2014)

    CAS  Google Scholar 

  45. A.P. Ginsberg, Inorganic Syntheses (Inorganic Syntheses, Inc., New Jersey, 1990)

    Google Scholar 

  46. X. Zhou, T. Wu, K. Ding, B. Hu, M. Hou, B. Han, Chem. Commun. 14, 1897–1899 (2009)

    Google Scholar 

  47. M.H. Ghatee, A.R. Zolghadr, Fluid Phase Equilib. 263, 168–175 (2008)

    CAS  Google Scholar 

  48. X. Zhou, Y. Zhang, Z. Huang, D. Lu, A. Zhu, G. Shi, Nat. Sci. Rep. 6, 1–10 (2016)

    Google Scholar 

  49. H. Yang, C. Shan, F. Li, D. Han, Q. Zhang, L. Niu, Chem. Comm. 26, 3880–3882 (2009)

    Google Scholar 

  50. T. Rajkumar, G.R. Rao, Mater. Chem. Phys. 112, 853–857 (2008)

    CAS  Google Scholar 

  51. M. Bahrami, S.J. Hoseini, Appl. Organomet. Chem. 32, e3920–e3931 (2018)

    Google Scholar 

  52. A. Balanta, C. Godard, C. Claver, Chem. Soc. Rev. 40, 4973–4985 (2011)

    CAS  PubMed  Google Scholar 

  53. J. Xiang, P. Li, H. Chong, L. Feng, F. Fu, Z. Wang, S. Zhang, M. Zhu, Nano Res. 7, 1337–1343 (2014)

    CAS  Google Scholar 

  54. Z.L. Du, Q.Q. Dang, X.M. Zhang, Ind. Eng. Chem. Res. 56, 4275–4280 (2017)

    CAS  Google Scholar 

  55. M. Nasrollahzadeh, B. Jaleh, A. Ehsania, New J. Chem. 39, 1148–1153 (2015)

    CAS  Google Scholar 

  56. S. Shabbir, S. Lee, M. Lim, H. Lee, H. Ko, Y. Lee, H. Rhee, J. Organomet. Chem. 846, 296–304 (2017)

    CAS  Google Scholar 

  57. N. Shang, C. Feng, H. Zhang, S. Gao, R. Tang, C. Wang, Z. Wang, Catal. Commun. 40, 111–115 (2013)

    CAS  Google Scholar 

  58. S. Liu, Q. Zhou, Z. Jin, H. Jiang, X. Jiang, Chin. J. Catal. 31, 557–561 (2010)

    Google Scholar 

  59. M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Khalaj, J. Mol. Catal. A 396, 31–39 (2015)

    CAS  Google Scholar 

  60. R. Zhang, J. Liu, F. Li, S. Wu, C. Xia, W. Sun, Chin. J. Chem. 29, 525–530 (2011)

    CAS  Google Scholar 

  61. Y.V. Ioni, S.E. Lyubimov, A.A. Korlyukov, M.Y. Antipin, V.A. Davankov, S.P. Gubin, Russ. Chem. Bull. 61, 1825–1827 (2012)

    CAS  Google Scholar 

  62. R. Kumar Rai, K. Gupta, S. Behrens, J. Li, Q. Xu, S. Kumar Singh, ChemCatChem 7, 1806–1812 (2015)

    Google Scholar 

  63. Ö. Metin, S. Fae Ho, C. Alp, H. Can, M.N. Mankin, M. Serdar Gültekin, M. Chi, S. Sun, Nano Res. 6, 10–18 (2013)

    CAS  Google Scholar 

  64. V. Calo, A. Nacci, A. Monopoli, F. Montingelli, J. Org. Chem. 70, 6040–6044 (2005)

    CAS  PubMed  Google Scholar 

  65. N. Ghanbari, S.J. Hoseini, M. Bahrami, Ultrason. Sonochem. 39, 467–477 (2017)

    CAS  PubMed  Google Scholar 

  66. D. Kaleeswaran, R. Antony, A. Sharma, A. Malani, R. Murugavel, ChemPlusChem 82, 1253–1265 (2017)

    CAS  PubMed  Google Scholar 

  67. S.J. Hoseini, M. Bahrami, N. Sadri, N. Aramesh, Z. Samadi Fard, H. Rafatbakhsh Iran, B. Habib Agahi, M. Maddahfar, M. Dehghani, A. Zarei Baba Arabi, N. Heidari, S.F. Hashemi Fard, Z. Moradi, J. Colloid Interface Sci. 513, 602–616 (2018)

    CAS  PubMed  Google Scholar 

  68. S. Lebaschi, M. Hekmati, H. Veisi, J. Colloid Interface Sci. 485, 223–231 (2017)

    CAS  PubMed  Google Scholar 

  69. M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Bagherzadeh, J. Colloid Interface Sci. 448, 106–113 (2015)

    CAS  PubMed  Google Scholar 

  70. Q. Liu, Y.R. Xu, A.J. Wang, J.J. Feng, RSC Adv. 5, 96028–96033 (2015)

    CAS  Google Scholar 

  71. S.K. Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal, Appl. Catal. 268, 61–66 (2004)

    CAS  Google Scholar 

  72. R. Antony, R. Marimuthu, R. Murugavel, ACS Omega 4, 9241–9250 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Y. Liu, Z. Liu, D. Huang, M. Cheng, G. Zeng, C. Lai, C. Zhang, C. Zhou, W. Wang, D. Jiang, H. Wang, B. Shao, Coord. Chem. Rev. 388, 63–78 (2019)

    CAS  Google Scholar 

  74. G. Law, P.R. Watson, Langmuir 17, 6138–6141 (2001)

    CAS  Google Scholar 

  75. D.H. Kwak, Y.W. Lee, K.H. Lee, A.R. Park, J.S. Moon, K.W. Park, Int. J. Electrochem. Sci. 8, 5102–5107 (2013)

    CAS  Google Scholar 

  76. H. Li, D. Kang, H. Wang, R. Wang, Int. J. Electrochem. Sci. 6, 1058–1065 (2011)

    CAS  Google Scholar 

  77. T. Maiyalagan, T.O. Alaje, K. Scott, J. Phys. Chem. C 116, 2630–2638 (2012)

    CAS  Google Scholar 

  78. J. Kramer, E. Redel, R. Thomann, C. Janiak, Organometallics 27, 1976–1978 (2008)

    Google Scholar 

Download references

Acknowledgements

We thank Iran National Science Foundation (INSF) (Grant No. 96010235), Shiraz University Research Council and Yasouj University Council for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jafar Hoseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6848 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheitasi Zarooni, M., Hoseini, S.J., Bahrami, M. et al. Pd/[C2NH2mim][Br] Thin Film Versus Pd/[C8mim][Cl] or Pd/[C8mim][BF4]: Catalytic Applications in Electrooxidation of Methanol, p-Nitrophenol Reduction and C–C Coupling Reaction. J Inorg Organomet Polym 30, 3448–3475 (2020). https://doi.org/10.1007/s10904-020-01514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01514-9

Keywords

Navigation