Skip to main content
Log in

A Dual-Functional Lead(II) Metal–Organic Framework Based on 5-Aminonicotinic Acid as a Luminescent Sensor for Selective Sensing of Nitroaromatic Compounds and Detecting the Temperature

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A 2D lead(II) metal–organic framework, namely [PbL(NO3)]n (namely complex 1), was successfully prepared based on 5-aminonicotinic acid (HL) ligand using the solvothermal method. The as-synthesized sample was studied and characterised in detail by single crystal X-ray diffraction, elemental analysis (C, H and N), powder X-ray diffraction, thermogravimetric analysis, and luminescent property. Thanks to the solid stability and luminescent property, the as-synthesized sample can be applied and considered as a bifunctional luminescent sensor for selective sensing of nitroaromatic compounds and detecting the temperature. The corresponding Ksv value of picric acid (namely PA) was accurately calculated about 1.1 × 104 M−1; meanwhile, the detection limit of complex 1 for PA can achieve as low as 1.68 × 10−5 mol L−1. Complex 1 also has good stability and recyclability even after four runs. In addition, the luminescent signals of complex 1 shown a good linear with the temperature from 20 to 150 K with R2 = 0.9961.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117, 8129–8176 (2017)

    CAS  PubMed  Google Scholar 

  2. A. Kirchon, L. Feng, H.F. Drake, E.A. Joseph, H.-C. Zhou, From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 47, 8611–8638 (2018)

    CAS  PubMed  Google Scholar 

  3. H. He, J.A. Perman, G. Zhu, S. Ma, Metal–organic frameworks for CO2 chemical transformations. Small 12, 6309–6324 (2016)

    CAS  PubMed  Google Scholar 

  4. J. Wang, L. Gao, J. Zhang, L. Zhao, X. Wang, X. Niu, L. Fan, T. Hu, Syntheses, gas adsorption, and sensing properties of solvent-controlled Zn(II) pseudo-supramolecular isomers and Pb(II) supramolecular isomers. Cryst. Growth Des. 19, 630–637 (2019)

    CAS  Google Scholar 

  5. H.-Y. Liu, J. Liu, G.-M. Gao, H.-Y. Wang, Assembly of two metal-organic frameworks based on distinct cobalt dimeric building blocks induced by ligand modification: gas adsorption and magnetic properties. Inorg. Chem. 57, 10401–10409 (2018)

    CAS  PubMed  Google Scholar 

  6. C. Chen, X. Feng, Q. Zhu, R. Dong, R. Yang, Y. Cheng, C. He, Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture. Inorg. Chem. 58, 2717–2728 (2019)

    CAS  PubMed  Google Scholar 

  7. K.M. Elsabawy, A.M. Fallatah, Ultrafast facile one pot synthesis of meso-tetraphenyl-porphinato–Cu(II) metal–organic frameworks (MOFs) for CO2 capture. J. Inorg. Organomet. Polym. 28, 2865–2870 (2018)

    CAS  Google Scholar 

  8. Y.-W. Peng, R.-J. Wu, M. Liu, S. Yao, A.-F. Geng, Z.-M. Zhang, Nitrogen coordination to dramatically enhance the stability of In-MOF for selectively capturing CO2 from a CO2/N2 mixture. Cryst. Growth Des. 19, 1322–1328 (2019)

    CAS  Google Scholar 

  9. C. Chen, M. Zhang, W. Zhang, J. Bai, Stable amide-functionalized metal–organic framework with highly selective CO2 adsorption. Inorg. Chem. 58, 2729–2735 (2019)

    CAS  PubMed  Google Scholar 

  10. M.B. Majewski, A.J. Howarth, P. Li, M.R. Wasielewski, J.T. Hupp, O.K. Farha, Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm 19, 4082–4091 (2017)

    CAS  Google Scholar 

  11. G. Zhu, M. Zhang, Y. Bu, L. Lu, X. Lou, L. Zhu, Enzyme-embedded metal-organic framework colloidosomes via an emulsion-based approach. Chem. Asian J. 13, 2891–2896 (2018)

    CAS  PubMed  Google Scholar 

  12. X. Lian, Y. Huang, Y. Zhu, Y. Fang, R. Zhao, E. Joseph, J. Li, J.-P. Pellois, H.-C. Zhou, Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy. Angew Chem. Int. Ed. Engl. 57, 5725–5730 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Li, X. Luo, Y. Zhou, L. Zhang, Q. Huo, Y. Liu, Two metal-organic frameworks with structural varieties derived from cis–trans isomerism nodes and effective detection of nitroaromatic explosives. Cryst. Growth Des. 18, 1857–1863 (2018)

    CAS  Google Scholar 

  14. Z.-W. Zhai, S.-H. Yang, M. Cao, L.-K. Li, C.-X. Du, S.-Q. Zang, Rational design of three two-fold interpenetrated metal–organic frameworks: luminescent Zn/Cd-metal–organic frameworks for detection of 2,4,6-trinitrophenol and nitrofurazone in the aqueous phase. Cryst. Growth Des. 18, 7173–7182 (2018)

    CAS  Google Scholar 

  15. K. Ren, S.-H. Wu, X.-F. Guo, H. Wang, Lanthanide organic framework as a reversible luminescent sensor for sulfamethazine antibiotics. Inorg. Chem. 58, 4223–4229 (2019)

    CAS  PubMed  Google Scholar 

  16. F. Guo, Q. Yang, X. Li, A water stable metal–organic framework based on Eu clusters as highly selective luminescent sensor towards MnO4. J. Inorg. Organomet. Polym. 29, 159–164 (2019)

    CAS  Google Scholar 

  17. C. Yu, X. Sun, L. Zou, G. Li, L. Zhang, Y. Liu, A pillar-layered Zn-LMOF with uncoordinated carboxylic acid sites: high performance for luminescence sensing Fe3+ and TNP. Inorg. Chem. 58, 4026–4032 (2019)

    CAS  PubMed  Google Scholar 

  18. X. Zhao, S. Wang, L. Zhang, S. Liu, G. Yuan, 8-Hydroxyquinolinate-based metal–organic frameworks: synthesis, tunable luminescent properties, and highly sensitive detection of small molecules and metal ions. Inorg. Chem. 58, 2444–2453 (2019)

    CAS  PubMed  Google Scholar 

  19. H. He, Q. Sun, W. Gao, J.A. Perman, F. Sun, G. Zhu, B. Aguila, K. Forrest, B. Space, S. Ma, A stable metal–organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem. Int. Ed. 57, 4657–4662 (2018)

    CAS  Google Scholar 

  20. Y. Fan, Y. Ren, J. Li, C. Yue, H. Jiang, Enhanced activity and enantioselectivity of henry reaction by the postsynthetic reduction modification for a chiral Cu(salen)-based metal–organic framework. Inorg. Chem. 57, 11986–11994 (2018)

    CAS  PubMed  Google Scholar 

  21. X. Yan, K. Wang, X. Xu, S. Wang, Q. Ning, W. Xiao, N. Zhang, Z. Chen, C. Chen, Brønsted basicity in metal-organic framework-808 and its application in base-free catalysis. Inorg. Chem. 57, 8033–8036 (2018)

    CAS  PubMed  Google Scholar 

  22. B. Ugale, S. Kumar, T.J. Dhilip Kumar, C.M. Nagaraja, Environmentally friendly, co-catalyst-free chemical fixation of CO2 at mild conditions using dual-walled nitrogen-rich three-dimensional porous metal–organic frameworks. Inorg. Chem. 58, 3925–3936 (2019)

    CAS  PubMed  Google Scholar 

  23. D. Zhang, Z.-Z. Xue, J. Pan, M.-M. Shang, Y. Mu, S.-D. Han, G.-M. Wang, Solvated lanthanide cationic template strategy for constructing iodoargentates with photoluminescence and white light emission. Cryst. Growth Des. 18, 7041–7047 (2018)

    CAS  Google Scholar 

  24. Y. Wang, S.-H. Xing, F.-Y. Bai, Y.-H. Xing, L.-X. Sun, Stable lanthanide–organic framework materials constructed by a triazolylcarboxylate ligand: multifunction detection and white luminescence tuning. Inorg. Chem. 57, 12850–12859 (2018)

    CAS  PubMed  Google Scholar 

  25. L. Zerkoune, S. Lesieur, J.-L. Putaux, L. Choisnard, A. Gèze, D. Wouessidjewe, B. Angelov, C. Vebert-Nardin, J. Doutch, A. Angelova, Soft Matter 12, 7539–7550 (2016)

    CAS  PubMed  Google Scholar 

  26. S. Wang, J.S. Lee, M. Wahiduzzaman, J. Park, M. Muschi, C. Martineau-Corcos, A. Tissot, K.H. Cho, J. Marrot, W. Shepard, G. Maurin, J.-S. Chang, C. Serre, A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat. Energy 3, 985–993 (2018)

    CAS  Google Scholar 

  27. K. Roztocki, M. Lupa, M. Hodorowicz, I. Senkovska, S. Kaskel, D. Matoga, Bulky substituent, and solvent-induced alternative nodes for layered Cd-isophthalate/acylhydrazone frameworks. CrystEngComm 20, 2841–2849 (2018)

    CAS  Google Scholar 

  28. S.L. Hanna, X. Zhang, K.-I. Otake, R.J. Drout, P. Li, T. Islamoglu, O.K. Farha, Guest-dependent single-crystal-to-single-crystal phase transitions in a two-dimensional uranyl-based metal–organic framework. Cryst. Growth Des. 19, 506–512 (2019)

    CAS  Google Scholar 

  29. K. Lu, A.L. Peláez, L.-C. Wu, Y. Cao, C.-H. Zhu, H. Fu, Ionothermal synthesis of five keggin-type polyoxometalate-based metal–organic frameworks. Inorg. Chem. 58, 1794–1805 (2019)

    CAS  PubMed  Google Scholar 

  30. B. Yan, R. Ma, Z. Chu, L.Q. Ding, Y. Long, L.L. Chen, X.Q. Lü, F. Bao, 2D cationic metal-organic frameworks of Ag+ with mixed ligands (semi-rigid dipyridyl, 3-pmpmd, and diphosphine, dppe). J. Inorg. Organomet. Polym. 20, 809–815 (2010)

    CAS  Google Scholar 

  31. S.-Q. Lu, Y.-Y. Liu, Z.-M. Duan, Z.-X. Wang, M.-X. Li, X. He, Improving water-stability and porosity of lanthanide metal–organic frameworks by stepwise synthesis for sensing and removal of heavy metal ions. Cryst. Growth Des. 18, 4602–4610 (2018)

    CAS  Google Scholar 

  32. N. Xu, Q. Zhang, B. Hou, Q. Cheng, G. Zhang, A novel magnesium metal–organic framework as a multiresponsive luminescent sensor for Fe(III) ions, pesticides, and antibiotics with high selectivity and sensitivity. Inorg. Chem. 57, 13330–13340 (2018)

    CAS  PubMed  Google Scholar 

  33. H. He, D.-Y. Zhang, F. Guo, F. Sun, A versatile microporous Zinc(II) metal–organic framework for selective gas adsorption, cooperative catalysis, and luminescent sensing. Inorg. Chem. 57, 7314–7320 (2018)

    CAS  PubMed  Google Scholar 

  34. L.-Q. Zuo, T.-F. Zhang, Z.-K. Zhang, J.-X. Hou, G.-J. Liu, J.-L. Du, L.-J. Li, A 3D binuclear salen-based multifunctional MOF: degradation of MO dye and highly selective sensing of Fe3+. Inorg. Chem. Commun. 99, 113–118 (2019)

    CAS  Google Scholar 

  35. B. Dutta, R. Jana, A.K. Bhanja, P.P. Ray, C. Sinha, M.H. Mir, Supramolecular aggregate of Cadmium(II)-based one-dimensional coordination polymer for device fabrication and sensor application. Inorg. Chem. 58, 2686–2694 (2019)

    CAS  PubMed  Google Scholar 

  36. W.-H. Huang, J. Ren, Y.-H. Yang, X.-M. Li, Q. Wang, N. Jiang, J.-Q. Yu, F. Wang, J. Zhang, Water-stable metal–organic frameworks with selective sensing on Fe3+ and nitroaromatic explosives, and stimuli-responsive luminescence on lanthanide encapsulation. Inorg. Chem. 58, 1481–1491 (2019)

    CAS  PubMed  Google Scholar 

  37. Y. Liu, C. Liu, X. Zhang, L. Liu, C. Ge, X. Zhuang, N.X. Zhang, Q. Yang, Y.-Q. Huang, Z. Zhang, Highly selective and sensitive detection of Fe3+, Al3+ and picric acid by a water-stable luminescent MOF. J. Solid State Chem. 272, 1–8 (2019)

    CAS  Google Scholar 

  38. J.A. Smith, M.A. Singh-Wilmot, K.P. Carter, C.L. Cahill, J.A. Ridenour, Lanthanide-2,3,5,6-tetrabromoterephthalic acid metal–organic frameworks: evolution of halogen···halogen interactions across the lanthanide series and their potential as selective bifunctional sensors for the detection of Fe3+, Cu2+, and nitroaromatics. Cryst. Growth Des. 19, 305–319 (2019)

    CAS  Google Scholar 

  39. H. He, S.-H. Chen, D.-Y. Zhang, E.-C. Yang, X.-J. Zhao, A luminescent metal-organic framework as an ideal chemosensor for nitroaromatic compounds. RSC Adv. 7, 38871–38876 (2017)

    CAS  Google Scholar 

  40. Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, B. Chen, A luminescent mixed-lanthanide metal–organic framework thermometer. J. Am. Chem. Soc. 134, 3979–3982 (2012)

    CAS  PubMed  Google Scholar 

  41. K.-M. Wang, L. Du, Y.-L. Ma, Q.-H. Zhao, A dual-functional cadmium(II) coordination polymer as a luminescent sensor for selective sensing of iron(III) ions and detecting the temperature. Transit. Met. Chem. 41, 573–580 (2016)

    CAS  Google Scholar 

  42. X.-D. Wang, O.S. Wolfbeis, R.J. Meier, Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834–7869 (2013)

    CAS  PubMed  Google Scholar 

  43. Y.-Y. Zhou, B. Geng, Z.-W. Zhang, Q.-B. Bo, Synthesis, structures and photoluminescence of three d10 5-aminonicotinate and 5-aminoisophthalate coordination polymers with bilayer structures. Inorg. Chim. Acta 444, 150–158 (2016)

    CAS  Google Scholar 

  44. G.M. Sheldrick, Phase Annealing in SHELX-90-direct methods for larger structures. Acta Cryst. A 46, 467–473 (1990)

    Google Scholar 

  45. G.M. Sheldrick, A short history of SHELX. Acta Cryst. A 64, 112–122 (2008)

    CAS  Google Scholar 

  46. G.M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. C 71, 3–8 (2015)

    Google Scholar 

  47. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009)

    CAS  Google Scholar 

  48. Y.-Y. Zhou, B. Geng, Z.-W. Zhang, Q.-B. Bo, Synthesis, structures and photoluminescence of three d10 5-aminonicotinate and 5-aminoisophthalate coordination polymers with bilayer structures. Inorg. Chim. Acta 444, 150–158 (2016)

    CAS  Google Scholar 

  49. A. Pankajakshan, D. Kuznetsov, S. Mandal, Ultrasensitive detection of Hg(II) ions in aqueous medium using zinc-based metal–organic framework. Inorg. Chem. 58, 1377–1381 (2019)

    CAS  PubMed  Google Scholar 

  50. K. Qu, J. Wang, J. Ren, X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem. Eur. J. 19, 7243–7249 (2013)

    CAS  PubMed  Google Scholar 

  51. Z.-W. Zhai, S.-H. Yang, M. Cao, L.-K. Li, C.-X. Du, S.-Q. Zang, Rational design of three two-fold interpenetrated metal–organic frameworks: luminescent Zn/Cd-metal–organic frameworks for detection of 2, 4, 6-trinitrophenol and nitrofurazone in the aqueous phase. Cryst. Growth Des. 18, 7173–7182 (2018)

    CAS  Google Scholar 

  52. H. He, Q.-Q. Zhu, F. Sun, G. Zhu, Two 3D metal-organic frameworks based on CoII and ZnII clusters for Knoevenagel condensation reaction and highly selective luminescence sensing. Cryst. Growth Des. 18, 5573–5581 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

The luminescent spectra and crystal table are listed in the supporting information. The CCDC reference number is 1898817. Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L. A Dual-Functional Lead(II) Metal–Organic Framework Based on 5-Aminonicotinic Acid as a Luminescent Sensor for Selective Sensing of Nitroaromatic Compounds and Detecting the Temperature. J Inorg Organomet Polym 30, 291–298 (2020). https://doi.org/10.1007/s10904-019-01186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01186-0

Keywords

Navigation