Skip to main content
Log in

Magnetized Activated Carbon Prepared by Oak Shell Biowaste and Modified with Nickel Hexacyanoferrate for Selective Removal of Cesium

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The activated carbon synthesized by biowaste materials was magnetized by Fe3O4 nanoparticles and then impregnated with nickel hexacyanoferrate. The magnetize composite was identified by various methods including; XRD, FT-IR, TG, VSM and SEM technique and then employed for separation of cesium from aquatic systems. The adsorption capacity was optimized by evaluating different experimental variables including time, pH, dose, and concentration, and the maximal uptake of 135.28 mg g−1 was obtained. Evaluation of adsorbent selectivity was performed with co-existing cations including Mg2+, Ca2+, Na+, K+ and NH4+. The results revealed that removal process was endothermic, spontaneous, with fast kinetic. The adsorption data was evaluated using Langmuir, Freundlich, Sips, and Redlich-Peterson isotherm models. The data was well described by the Langmuir model. The pseudo first-order, pseudo second-order, Intra-particle diffusion equation and Elovich kinetic models were used to evaluate the kinetic data. The used sorbent regenerated by use of nitric acid solution retained most of its initial capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.M. Abd El-Latif, M.F. Elkady, Equilibrium isotherms for harmful ions sorption using nano zirconium vanadate ion exchanger. Desalination 255, 21–43 (2010)

    CAS  Google Scholar 

  2. M. Adibmehr, H. Faghihian, Magnetization and functionalization of activated carbon prepared by oak shell biowaste for removal of Pb2+ from aqueous solutions. Chem. Eng. J. 205, 519–532 (2018)

    CAS  Google Scholar 

  3. M. Adibmehr, H. Faghihian, Novel magnetic biorbent prepared by oak shell waste material as an efficient adsorbent for consecutive removal of Pb2+, Ag+, Ba2+, Sr2+ and chromate from aqueous solutions. C. R. Chim. 21, 840–853 (2018)

    CAS  Google Scholar 

  4. Sh Amanipour, H. Faghihian, Potassium hexacyanoferrate-clinoptilolite adsorbent for removal of Cs+ and Sr2+ from aqueous solutions. Int. J. Environ. Stud. 74, 86–104 (2017)

    CAS  Google Scholar 

  5. S.V. Avery, Cesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity. J. Chem. Technol. Biotechnol. 62, 76–84 (1995)

    Google Scholar 

  6. M.R. Awual, T. Yaita, T. Taguchi, H. Shiwaku, Sh Suzuki et al., Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. J. Hazard. Mater. 278, 227–235 (2014)

    CAS  PubMed  Google Scholar 

  7. E. Bascetin, H. Haznedaroglu, A.Y. Erkol, The adsorption behavior of cesium on silica gel. Appl. Radiat. Isot. 59, 5–9 (2003)

    CAS  PubMed  Google Scholar 

  8. M. Caccin, F. Giacobbo, M. Da Ros, L. Besozzi, M. Mariani, Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J. Radioanal. Nucl. Chem. 297(1), 9–18 (2013)

    CAS  Google Scholar 

  9. M. Chahud, F.M.A.S.C. Ilho, N.S. Fernandes, M.I. Shiro, A thermal analysis study of dithizone and dithizonates of mercury, silver and bismuth. Eclética Química 25, 1–6 (2000)

    Google Scholar 

  10. C.Y. Chang, L.K. Chau, W.P. Hu, C.Y. Wang, J.H. Liao, Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Microporous Mesoporous Mater. 109, 505–512 (2008)

    CAS  Google Scholar 

  11. R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, H. Na et al., Selective removal of cesium ions from wastewater using copper hexacyanoferrate nano films in an electrochemical system. Electron. Chim. Acta 87, 119–125 (2013)

    CAS  Google Scholar 

  12. W. Chen, L. Pan, L. Chen, Q. Wang, Ch. Yan, Dechlorination of hexachlorobenzene by nano zero-valent iron/activated carbon composite: Iron loading, kinetics and pathway. R. Soc. Chem. Adv. 4, 46689–46696 (2014)

    CAS  Google Scholar 

  13. R. Cortés-Martínez, M.T. Olguín, M. Solache-Ríos, Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems. Desalination 258, 164–170 (2010)

    Google Scholar 

  14. M. Dashtinejad, M. Samadfam, J. Fasihi, F. Grayeli-Fumeshkenar, H. Sepehrian, Synthesis, characterization, and cesium sorption performance of potassium nickel hexacyanoferrate-loaded granular activated carbon. Part. Sci. Technol. 32, 348–354 (2014)

    CAS  Google Scholar 

  15. C. Delchet, A. Tokarev, X. Dumail, G. Toquer, Y. Barre, Y. Guari et al., Extraction of radioactive cesium using innovative functionalized porous materials. R. Soc. Chem. Adv. 2, 5707–5716 (2012)

    CAS  Google Scholar 

  16. D. Ding, Y. Zhao, S. Yang, W. Shi, Z. Zhang, Z. Lei, Y. Yang, Adsorption of cesium from aqueous solution using agricultural residue e Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. Water Res. 41, 2563–2571 (2013)

    Google Scholar 

  17. D. Ding, Z. Lei, Y. Yang, Ch. Feng, Z. Zhang, Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue–walnut shell. J. Hazard. Mater. 270, 187–195 (2014)

    CAS  PubMed  Google Scholar 

  18. H.M.H. Gad, H.A. Elsana fi nia, M.M.S. Ali, Y.F. Lasheen, M.G. Abdelwahed, Factors affecting the sorption behavior of Cs+ and Sr2+ using biosorbent material. Russ. J. Appl. Chem. 89(6), 988–999 (2016)

    CAS  Google Scholar 

  19. Y.P.K. Gallagher, B. Precott, Further studies of the thermal decomposition of Europium hexacyanoferrate(II1) and ammonium europium hexacyanoferrate(I1). Inorg. Chem. 9, 2510–2512 (1970)

    CAS  Google Scholar 

  20. N. Genevois, N. Villandier, V. Chaleix, E. Poli, L. Jauberty, V. Gloaguen, Removal of cesium ion from contaminated water: Improvement of Douglas fir bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation. Ecol. Eng. 100, 186–193 (2017)

    Google Scholar 

  21. F. Han, G.H. Zhang, P. Gu, Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration. J. Hazard. Mater. 225, 107–113 (2012)

    PubMed  Google Scholar 

  22. S. Hashemian, H. Saffari, S. Ragabion, Adsorption of Cobalt(II) from aqueous solutions by Fe3O4/bentonite nanocomposite. Water Air Soil Pollut. 226, 2212–2222 (2015)

    Google Scholar 

  23. G. Huang, J.X. Shi, T.A. Langrish, Removal of Cr(VI) from aqueous solution using activated carbon modified with nitric acid. Chem. Eng. J. 152(2), 434–439 (2009)

    CAS  Google Scholar 

  24. R. Jalali-Rad, H. Ghafourian, Y. Asef, S.T. Dalir, M.H. Sahafipour, B.M. Gharanjik, Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications. J. Hazard. Mater. B 116, 125–134 (2004)

    CAS  Google Scholar 

  25. W. Jin, A. Toutianoush, M. Pyrasch, J. Schnepf, H. Gottschalk, W. Rammensee, B. Tieke, Self-assembled films of prussian blue and analogues: structure and morphology, elemental composition, film growth, and nanosieving of ions. J. Phys. Chem. B 107, 12062–12070 (2003)

    CAS  Google Scholar 

  26. X. Jin, L. Huang, Sh Yu, M. Ye, J. Yuana, J. Shen et al., Selective electrochemical removal of cesium ion based on nickel hexacyanoferrate/reduced graphene oxide hybrids. Sep. Purif. Technol. 209, 65–72 (2019)

    CAS  Google Scholar 

  27. R. Ishihara, K. Fujiwara, T. Harayama, Y. Okamura, Sh Uchyama, M. Baba et al., Removal of cesium using cobalt ferrocyanide impregnated polymer-chain-grafted fibers. J. Nucl. Sci. Technol. 48(10), 1281–1284 (2011)

    CAS  Google Scholar 

  28. Y. Lin, G.E. Fryxell, H. Wu, M. Engelhard, Selective sorption of cesium using self-assembled monolayers on mesoporous supports. Environ. Sci. Technol. 35, 3962–3966 (2001)

    CAS  PubMed  Google Scholar 

  29. H. Kazemian, H. Zakeri, M.S. Rabbani, Cs and Sr removal from solution using potassium nickel hexacyanoferrate impregnated zeolites. J. Radioanal. Nucl. Chem. 268(2), 231–236 (2006)

    CAS  Google Scholar 

  30. Sh Khandaker, T. Kuba, S. Kamida, Y. Uchikawa, Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal authors. J. Environ. Chem. Eng. 5, 1456–1464 (2017)

    CAS  Google Scholar 

  31. Y.P. Kumar, P. King, V.S.R.K. Prasad, Equilibrium and kinetic studies for the biosorption system of copper (II) ion from aqueous solution using 20 Tectona grandis Lf leaves powder. J. Hazard. Mater. 137(2), 1211–1217 (2006)

    Google Scholar 

  32. C.L. Lalhmunsiama, D. Tiwari, S.M. Lee, Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions. Appl. Surf. Sci. 321, 275–282 (2014)

    CAS  Google Scholar 

  33. F. Lasheen, H.M.H. Gad, T.S. El-Zakla, Efficiency of locally prepared activated carbon in the preconcentration of barium-133 and radium-226 radionuclides in single and binary systems. Radiochemistry 55, 589–595 (2013)

    Google Scholar 

  34. A.Y. Lonin, V.V. Levenets, I.M. Neklyudov, A.O. Shchur, The usage of zeolites for dynamic sorption of cesium from waste waters of nuclear power plants. J. Radioanal. Nucl. Chem. 303, 831–836 (2015)

    CAS  Google Scholar 

  35. J. Mizera, G. Mizerová, V. Machovič, L. Borecká, Sorption of cesium, cobalt and europium on low-rank coal and chitosan. Water Res. 41(3), 620–626 (2007)

    CAS  PubMed  Google Scholar 

  36. Sh Naeimi, H. Faghihian, Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Sep. Purif. Technol. 175, 255–265 (2017)

    CAS  Google Scholar 

  37. A. Nilchi, A. Khanchi, M. GhanadiMaragheh, The importance of cerium substituted phosphates as cation exchanger some unique properties and related application potentials. Talanta 56(3), 383–393 (2002)

    CAS  PubMed  Google Scholar 

  38. A.E. Ofomaja, A. Pholosi, E.B. Naidoo, Kinetics and competitive modeling of cesium biosorption onto iron(III) hexacyanoferrate modified pine cone powder. Int. Biodeterior. Biodegradation 92, 71–78 (2014)

    CAS  Google Scholar 

  39. A.E. Ofomaja, A. Pholosi, E.B. Naidoo, Application of raw and modified pine biomass material for cesium removal from aqueous solution. Ecol. Eng. 82, 258–266 (2015)

    Google Scholar 

  40. P. Panneerselvam, N. Morad, K. Tan, Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 186, 160–168 (2011)

    CAS  PubMed  Google Scholar 

  41. H. Parab, M. Sudersanan, Engineering a lignocellulosic biosorbente coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res. 44(3), 854–860 (2010)

    CAS  PubMed  Google Scholar 

  42. D. Parajuli, A. Kitajima, A. Takahashi, H. Tanaka, H. Ogawa, Y. Hakuta et al., Application of Prussian blue nanoparticles for the radioactive Cs decontamination in Fukushima region. J. Environ. Radioact. 151, 233–237 (2016)

    CAS  PubMed  Google Scholar 

  43. W. Plazinski, W. Rudzinski, Modeling the effect of surface heterogeneity in equilibrium of heavy metal ion biosorption by using the ion exchange model. Environ. Sci. Technol. 43(19), 7465–7471 (2009)

    CAS  PubMed  Google Scholar 

  44. M. Poletto, J. Dettenborn, V. Pistor, M. Zeni, A. Zattera, Materials produced from plant biomass. Part I: evaluation of thermal stability and pyrolyses of wood. J. Mater. Res. 13, 375–389 (2010)

    CAS  Google Scholar 

  45. K. Rajczykowski, O. Sałasiń ska, K. Loska, Zinc removal from the aqueous solutions by the chemically modified biosorbents. Water Air Soil Pollut. 229, 1–7 (2018)

    Google Scholar 

  46. H. Rogers, J. Bowers, D. Gates-Anderson, An isotope dilution–precipitation process for removing radioactive cesium from waste water. J. Hazard. Mater. 243, 124–129 (2012)

    CAS  PubMed  Google Scholar 

  47. R. Saberi, A. Nilchi, S. RasoliGarmarodi, R. Zarghami, Adsorption characteristic of 137Cs from aqueous solution using PAN-based sodium titanosilicate composite. J. Radioanal. Nucl. Chem. 284, 461–469 (2010)

    CAS  Google Scholar 

  48. R.R. Sheha, Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. J. Colloid Sci. 388, 21–30 (2012)

    CAS  Google Scholar 

  49. K. Shiozaki, N. Shigemot, Comparative study of Cs-uptake performance by potassium iron(III) hexacyanoferrate(II) supported on wood chips and activated carbon. J. Chem. Eng. Jpn. 46, 601–608 (2013)

    CAS  Google Scholar 

  50. K. Subramanian, P.S. Kumar, I.P. Jayapa, N. Venkatesh, Characterization of lingo-cellulosic seed fibre from WrightiaTinctoria plant for textile applications- an exploratory investigation. Eur. Polymer J. 41, 853–866 (2005)

    CAS  Google Scholar 

  51. S. Vashnia, H. Tavakoli, R. Cheraghali, H. Sepehrian, Zinc hexacyanoferrate loaded mesoporous MCM-41 as a new adsorbent for cesium: equilibrium, kinetic and thermodynamic studies. Desalin Water Treat 55, 1220–1228 (2014)

    Google Scholar 

  52. T. Vincent, C. Vincent, E. Guibal, Immobilization of metal hexacyanoferrate ion- exchangers for the synthesis of metal ion sorbents-A mini-review. Molecules 20, 20582–20613 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. A.K. Vipin, B. Hu, B. Fugetsu, Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. J. Hazard. Mater. 258–259, 93–101 (2013)

    PubMed  Google Scholar 

  54. K. Volchek, M.Y. Miah, W. Kuang, Z. DeMaleki, F.H. Tezel, Adsorption of cesium on cement mortar from aqueous solutions. J. Hazard. Mater. 194, 331–337 (2011)

    CAS  PubMed  Google Scholar 

  55. L. Vrtoch, M. Pipı´sˇka, M. Hornı´k, J. Augustı´n, J. Lesny, Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroom biomass. J. Radioanal. Nucl. Chem. 287, 853–862 (2011)

    CAS  Google Scholar 

  56. F.Y. Wang, H. Wang, J.W. Ma, Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal. J. Hazard. Mater. 177(1), 300–306 (2010)

    CAS  PubMed  Google Scholar 

  57. Zh Wang, H. Guo, F.N. She, G. Yang, Y. Zhang, Y. Zeng et al., Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4 +), nitrate (NO3 ), and phosphate (PO −43 ). Chemosphere 119, 646–653 (2015)

    CAS  PubMed  Google Scholar 

  58. H. Wang, X. Xu, Zh Ren, B. Gao, Removal of phosphate and chromium (VI) from liquids by amine crosslinked nano-Fe3O4 biosorbent derived from corn straw. R. Soc. Chem. Adv. 6, 47237–47248 (2016)

    CAS  Google Scholar 

  59. J. Wu, B. Li, J. Liao, Y. Feng, D. Zhang, J. Zhao et al., Behavior and analysis of cesium adsorption on montmorillonite mineral. J. Environ. Radioact. 100(10), 914–920 (2009)

    CAS  PubMed  Google Scholar 

  60. L. Xiaona, L. Airong, L. Mingzhong, T. Xingjun, Equilibrium and kinetic studies of copper biosorption by dead Ceriporia lacerata biomass isolated from the litter of an invasive plant in China. J. Environ. Health Sci. Eng. 13, 37–44 (2015)

    Google Scholar 

  61. S. Yamada, K. Kuwabara, K. Koumoto, Characterization of Prussian Blue analogue: nanocrystalline nickel-iron cyanide. Mater. Sci. Eng. B 49, 89–94 (1997)

    Google Scholar 

  62. H.R. Yu, J.Q. Hu, Z. Liu, X.J. Ju, R. Xie, W. Wang et al., Ion recognizable hydrogels for efficient removal of cesium ions from aqueous environment. J. Hazard. Mater. 323, 632–640 (2016)

    PubMed  Google Scholar 

  63. ShY Zhao, D. Keun Lee, Ch. Woo Kim, H. Gil Cha, Y. Hwan Kim, Y. Soo Kang, Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption. Bull. Korean Chem. Soc. 27, 237–242 (2006)

    Google Scholar 

Download references

Acknowledgments

This work was performed in the Islamic Azad University, Shahreza Branch. The authors wish to thanks the co-operation of the university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Faghihian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adibmehr, M., Faghihian, H. Magnetized Activated Carbon Prepared by Oak Shell Biowaste and Modified with Nickel Hexacyanoferrate for Selective Removal of Cesium. J Inorg Organomet Polym 29, 1941–1955 (2019). https://doi.org/10.1007/s10904-019-01154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01154-8

Keywords

Navigation