Skip to main content
Log in

Effect of Metal Nanoparticles on the Catalytic Activity of Pectin (poly vinyl alcohol-co-polyacrylamide) Nanocomposite Hydrogels

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Due to the important application of the reduced forms of nitro aromatic compounds in pharmacy, agriculture, biomedicine and many other industries, novel catalyst systems that can operate in very different environments are of great significance. In this respect nanocomposite hydrpgels based on pectin copolymerized with poly(vinyl alcohol) and poly acrylamide embedded with various metal nanoparticles were prepared by the effect of radiation and examined as catalyst for reduction of nitrophenols. The swelling ability of the prepared pectin (poly vinyl alcohol-co-polyacrylamide) hydrogel was briefly studied to confirm the optimum conditions selected. The prepared hydrogels and nanocomposite hydrogels were examined by various important techniques to prove the formation of metal nanoparticles as EDX, and transmission electron microscopy. Different parameters that affect the reduction process, such as effect of different compositions of hydrogel, effect of different metal nano-particles on reduction and the time taken to finish the reduction of 2-nitrophenol to 2-aminophenol, NaBH4 concentration, temperature and concentration of 2-NP are studied and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.V. Feng, J.L. Lyon, J.S. Croley, R.M. Crooks, D.A.V. Bout, K.J. Stevenson, Synthesis and catalytic evaluation of dendrimer-encapsulated Cu nanoparticles an undergraduate experiment exploring catalytic nanomaterials. J. Chem. Educ. 86, 368–372 (2009)

    Article  CAS  Google Scholar 

  2. G. Booth, Nitro Compounds, Aromatic, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2005)

    Google Scholar 

  3. M. Emmrich, Kinetics of the alkaline hydrolysis of 2, 4, 6-trinitrotoluene in aqueous solution and highly contaminated soils. Environ. Sci. Technol. 33, 3802–3805 (1999)

    Article  CAS  Google Scholar 

  4. P.M. Bradley, F.H. Chapelle, Factors affecting microbial 2, 4, 6-trinitrotoluenemineralization in contaminated soil. Environ. Sci. Technol. 29, 802–806 (1995)

    Article  CAS  PubMed  Google Scholar 

  5. D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852–7872 (2005)

    Article  CAS  Google Scholar 

  6. D. Astruc, Nanoparticles and Catalysis (Wiley, New York, 2008)

    Google Scholar 

  7. N. Pradhan, A. Pal, T. Pal, Catalytic reduction of aromatic nitro compounds bycoinage metal nanoparticles. Langmuir 17, 1800–1802 (2001)

    Article  CAS  Google Scholar 

  8. N. Pradhan, A. Pal, T. Pal, Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A 196, 247–257 (2002)

    Article  CAS  Google Scholar 

  9. A. Gangula, R. Podila, M. Ramakrishna, L. Karanam, C. Janardhana, A.M. Rao, Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from breynia rhamnoides. Langmuir 27, 15268–15274 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. F. Lin, R. Doong, Bifunctional Au-Fe3O4 hetero structures for magnetically recyclable catalysis of nitrophenol reduction. J. Phys. Chem. C 115, 6591–6598 (2011)

    Article  CAS  Google Scholar 

  11. P. Zhang, Y. Sui, G. Xiao, Y. Wang, C. Wang, B. Liu, G. Zou, B. Zou, Facile fabrication of faceted copper nanocrystals with high catalytic activity for p-nitrophenol reduction. J. Mater. Chem. A 1, 1632–1638 (2013)

    Article  CAS  Google Scholar 

  12. R. Prucek, L. Kvítek, A. Panáček, L. Vančurová, J. Soukupová, D. Jančík, R. Zbořil, Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I)oxide nanocubes with high catalytic efficiency. J. Mater. Chem. 19, 8463–8469 (2009)

    Article  CAS  Google Scholar 

  13. B. Mu, Q. Wang, A. Wang, Preparation of magnetic attapulgite nanocomposite for the adsorption of Ag+ and application for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 1, 7083–7090 (2013)

    Article  CAS  Google Scholar 

  14. Y. Sun, L. Xu, Z. Yin, X. Song, Synthesis of copper submicro nanoplates with high stability and their recyclable superior catalytic activity towards 4-nitrophenolreduction. J. Mater. Chem. A 1, 12361–12370 (2013)

    Article  CAS  Google Scholar 

  15. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, 167–181 (2003)

    Article  Google Scholar 

  16. A.K. Gupta, R.R. Naregalkar, V.D. Vaidya, M. Gupta, Recent advancese on surface engineering of magnetic iron oxide nanoparticles and their biomedicial applications. Nanomedicine 2, 23–39 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. V.I. Shubayev, T.R. Pisanic II, S. Jin, Magnetic nanoparticles for theagnostics. Adv. Drug. Deliv. Rev. 61, 467–477 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A.J. Cole, V.C. Yang, A.E. David, Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 29, 323–332 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Peng, C. Wang, J. Xie, S.H. Sun, Synthesis and stabilization of monodisperse Fe nanoparticles. J. Am. Chem. Soc. 128, 10676–10677 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. M.V. Kovalenko, M.I. Bodnarchuk, R.T. Lechner, G. Hesser, F. Schaffler, W. Heiss, Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J. Am. Chem. Soc. 129, 6352–6353 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)

    Article  CAS  Google Scholar 

  22. V.I. Shubayev, T.R. Pisanic II, S. Jin, Magnetic nanoparticles for theragnostics. Adv. Drug. Deliv. Rev. 61, 467–477 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. Narayana Reddy, K. Varaprasad, S. Ravindra, G.V. Subba Reddy, K.M.S. Reddy, K.M. Mohan Reddy, K. Mohana Raju, Evaluation of blood compatibility and drug release studies of gelatin based magnetic hydrogel nanocomposites. Colloids Surf. A 385, 20–27 (2011)

    Article  CAS  Google Scholar 

  24. S. Butun, N. Sahiner, A versatile hydrogel template for metal nano particle preparation and their use in catalysis. Polymer 52, 4834–4840 (2011)

    Article  CAS  Google Scholar 

  25. F. Ganji, S. Vasheghani-Farahani, E. Vasheghani-Farahani, Theoretical description of hydrogel swelling: a review. Iran. Polym. J. 19, 375–398 (2010)

    CAS  Google Scholar 

  26. F.I. Abou El Fadl, G.A. Mahmoud, N.A. Badawy, F.H. Kamal, A.A. Mohamed, Pectin-based hydrogels and its ferrite nanocomposites for removal of nitro compounds. Desalin. Water Treat. 90, 283–293 (2017)

    Article  CAS  Google Scholar 

  27. L. Cui, J. Jia, Y. Guo, Y. Liu, P. Zhu, Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr. Polym. 99, 31–38 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. F.I. Abou El Fadl, H.L. Abd El-Mohdy, Removal of heavy metal ions from aqueous solutions by radiation-induced chitosan/(acrylamidoglycolic acid-co-acrylic acid) magnetic nanopolymer. Int. J. Adv. Res. 2(12), 380–395 (2014)

    Google Scholar 

  29. C. Cao, L. Xiao, C. Chen, X. Shi, Q. Cao, L. Gao, In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction–precipitation method and their application in adsorption of reactive azo dye. Powder Technol. 260, 90–97 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Ismail Abou El Fadl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou El Fadl, F.I., Mahmoud, G.A. & Mohamed, A.A. Effect of Metal Nanoparticles on the Catalytic Activity of Pectin (poly vinyl alcohol-co-polyacrylamide) Nanocomposite Hydrogels. J Inorg Organomet Polym 29, 332–339 (2019). https://doi.org/10.1007/s10904-018-1003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-1003-8

Keywords

Navigation