Skip to main content
Log in

Characterization and Charge Transport Mechanism of Multifunctional Polyfuran/Tin(IV) Oxide Composite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study reports the synthesis of polyfuran/tin(IV) oxide (PFU/SnO2) composite by the chemical polymerization method. Characterization studies indicated that the filling process mostly affected the C=C and C=O functional groups in the PFU rings and as well as increased the degree of crystallinity of PFU from 2.93 to 6.97%. Furthermore, tin oxide particles decreased the energy band gap of PFU from 3.12 to 2.86 eV, while increasing the intensity of fluorescence emission. The interaction between filler particles and polymer matrix increased the thermal stability of PFU by about 25 °C. The filling process decreased the size of the agglomerated particles on the PFU surface from several microns to under 1 µm. Different phases originated from polymer matrix and filler particles were also observed in the surface analyses of the samples. Dielectric measurements showed that the filling process changed the charge transport mechanism of PFU as well as significantly decreased the hopping distance of the charge carriers leading to an increase in the electrical conductivity. Experimental results indicated that conducting PFU/SnO2 composite can be used in the various electronic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I.A. Hümmelgen, Organic electronic solid state device: electrochemistry of material preparation. J. Solid State Electrochem. 21(7), 1977–1985 (2017)

    Article  CAS  Google Scholar 

  2. H. Ozkazanc, Novel nanocomposites based on polythiophene and zirconium dioxide. Mater. Res. Bull. 73(2), 226–232 (2016)

    Article  CAS  Google Scholar 

  3. E. Nazarzadeh Zare, M.M. Lakouraj, M. Baghayeri, Electro-magnetic polyfuran/Fe3O4 nanocomposite: synthesis, characterization, antioxidant activity, and its application as a biosensor. Int. J. Polym. Mater. Polym. Biomater. 64(4), 175–183 (2015)

    Article  CAS  Google Scholar 

  4. F. Alakhras, R. Holze, Furan–thiophene copolymers: electrosynthesis and electrochemical behavior. J. Appl. Polym. Sci. 107(2), 1133–1141 (2008)

    Article  CAS  Google Scholar 

  5. D.Y. Kim, H.N. Cho, C.Y. Kim, Blue light emitting polymers. Prog. Polym. Sci. 25, 1089–1139 (2000)

    Article  CAS  Google Scholar 

  6. J.C. Bijleveld, B.P. Karsten, S.G.J. Mathijssen, M.M. Wienk, D.M. de Leeuw, R.A.J. Janssen, Small band gap copolymers based on furan and diketopyrrolopyrrole for field-effect transistors and photovoltaic cells. J. Mater. Chem. 21(5), 1600–1606 (2011)

    Article  CAS  Google Scholar 

  7. T. Tibaoui, B. Zaidi, M. Bouachrine, M. Paris, K. Alimi, A study of polymers obtained by oxidative coupling of furan monomers. Synth. Met. 161(21–22), 2220–2225 (2011)

    Article  CAS  Google Scholar 

  8. X. Wan, F. Yan, S. Jin, X. Liu, G. Xue, Low potential electrochemical synthesis of polyfuran and characterization of the obtained free-standing film. Chem. Mater. 11(9), 2400–2407 (1999)

    Article  CAS  Google Scholar 

  9. X.G. Li, Y. Kang, M.R. Huang, Optimization of polymerization conditions of furan with aniline for variable conducting polymers. J. Comb. Chem. 8(5), 670–678 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. A. Gök, B. Sarı, M. Talu, Chemical preparation of conducting polyfuran/poly(2-chloroaniline) composites and their properties: a comparison of their components, polyfuran and poly(2-chloroaniline). J. Appl. Polym. Sci. 88(13), 2924–2931 (2003)

    Article  CAS  Google Scholar 

  11. J. Xu, W. Zhou, B. Chen, S. Pu, J. Wang, Y. Wan, Low potential electrosyntheses of free-standing poly(dibenzofuran) films in mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid. J. Polym. Sci. A 44(3), 1125–1135 (2006)

    Article  CAS  Google Scholar 

  12. M.C. Jobanputra, M.F. Durstock, S.J. Clarson, Investigation of plasma polymerized benzene and furan thin films for application in opto-electronic devices. J. Appl. Polym. Sci. 87(3), 523–528 (2003)

    Article  CAS  Google Scholar 

  13. M.G. Olayo, R. Zúñiga, F. González-Salgado, L.M. Gómez, M. González-Torres, R. Basurto, G.J. Cruz, Structure and morphology of plasma polyfuran particles. Polym. Bull. 74(2), 571–581 (2017)

    Article  CAS  Google Scholar 

  14. A. Uygun, L. Oksuz, A.G. Yavuz, A. Gule, S. Sen, Characteristics of nanocomposite films deposited by atmospheric pressure uniform RF glow plasma. Curr. Appl. Phys. 11(2), 250–254 (2011)

    Article  Google Scholar 

  15. F. Benvenuti, A.M. Raspolli Galletti, C. Carlini, G. Sbrana, A. Nannini, P. Bruschi, Synthesis, structural characterization and electrical properties of highly conjugated soluble poly(furan)s. Polymer 38(19), 4973–4982 (1997)

    Article  CAS  Google Scholar 

  16. K. Wang, Y. Hoshina, Y. Cao, M. Tagaya, T. Kobayashi, Novel metal-like luster conductive film made of pyrrole and furfural in straightforward chemical copolymerization. Ind. Eng. Chem. Res. 52(8), 2762–2771 (2013)

    Article  CAS  Google Scholar 

  17. L.P. Lu, C.E. Finlayson, R.H. Friend, A study of tin oxide as an election injection layer in hybrid polymer light-emitting diodes. Semicond. Sci. Technol. 29, 125002 (2014). (7 pp).

    Article  CAS  Google Scholar 

  18. Y. Yang, S. Ren, X. Song, Y. Guo, D. Si, H. Jing et al., Sn@SnO2 attached on carbon spheres as additive-free electrode for high-performance pseudocapacitor. Electrochim. Acta 209, 350–359 (2016)

    Article  CAS  Google Scholar 

  19. R. Von Hagen, M. Sneha, S. Mathur, Ink-jet printing of hollow SnO2 nanospheres for gas sensing applications. J. Am. Ceram. Soc. 97(4), 1035–1040 (2014)

    Article  CAS  Google Scholar 

  20. S. Han, B. Jang, T. Kim, S.M. Oh, T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 15(11), 1845–1850 (2015)

    Article  CAS  Google Scholar 

  21. A. Kumar, Mu. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Kham, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of bisphenol A: symbiose of adsorption and photocatalysis. Int. J. Biol. Macromol. 104, 1172–1184 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. G. Sharma, B. Thakur, Mu. Naushad, A.H. Al-Muhtaseb, A. Kumar, M. Sillanpaa, G.T. Mola, Fabrication and characterization of sodium dodecyl sulphate@ironsilicophosphate nanocomposite: ion exchange properties and selectivity for binary metal ions. Mater. Chem. Phys. 193, 129–139 (2017)

    Article  CAS  Google Scholar 

  23. G. Sharma, A. Kumar, S. Sharma, Mu. Naushad, R.P. Dwivedi, Z.A. ALOthman, G.T. Mola, Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J. King Saud Univ. (2017). https://doi.org/10.1016/j.jksus.2017.06.012

    Article  Google Scholar 

  24. G. Sharma, A. Kumar, Mu. Naushad, A. Kumar, A.H. Al-Muhtaseb, P. Dhiman, A.A. Ghfar, F.J. Stadler, M.R. Khan, Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites. J. Clean. Prod. 172, 2919–2930 (2018)

    Article  CAS  Google Scholar 

  25. Mu. Naushad, T. Ahamad, G. Sharma, A.H. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem. Eng. J. 300, 306–316 (2016)

    Article  CAS  Google Scholar 

  26. M. Xu, J. Zhang, S. Wang, X. Guo, H. Xia, Y. Wang et al., Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic–organic hybrids. Sens. Actuators B 146(1), 8–13 (2010)

    Article  CAS  Google Scholar 

  27. L. Yuan, J. Wang, S.Y. Chew, J. Chen, Z.P. Guo, L. Zhao, K. Konstantinov, H.K. Liu, Synthesis and characterization of SnO2-polypyrrole composite for lithium-ion battery. J. Power Sources 174(2), 1183–1187 (2007)

    Article  CAS  Google Scholar 

  28. S. Şen, B. Bardakçi, A.G. Yavuz, A.U. Gök, Polyfuran/zeolite LTA composites and adsorption properties. Eur. Polym. J. 44(8), 2708–2717 (2008)

    Article  CAS  Google Scholar 

  29. M. Talu, M. Kabasakaloglu, F. Yildirim, B. Sari, Electrochemical synthesis and characterization of homopolymers of polyfuran and polythiophene and bipolymer films polyfuran/polythiophene and polythiophene/polyfuran. Appl. Surf. Sci. 181(1–2), 51–60 (2001)

    Article  CAS  Google Scholar 

  30. S. Sarıtaş, S. Eşsiz, B. Sarı, Synthesis and characterization of foldable and magnetic field-sensitive, freestanding poly(vinyl acetate)/poly(vinyl chloride)/polyfuran composite and nanocomposite films. J. Magn. Magn. Mater. 433, 120–130 (2017)

    Article  CAS  Google Scholar 

  31. N. Ballav, M. Biswas, Preparation and evaluation of nanocomposites of polyfuran with Al2O3 and montmorillonite clay. Polym. Int. 53(10), 1467–1472 (2004)

    Article  CAS  Google Scholar 

  32. E.S. De La Blanca, I. Carrillo, M.J. Gonzalez-Tejera, I. Hernandez-Fuentes, Structure of polyfurane/perchlorate doped films by FTIR spectroscopy: effect of the synthesis conditions. J. Polym. Sci. A 38(2), 291–298 (2000)

    Article  Google Scholar 

  33. H. Wang, B. Li, J. Gao, M. Tang, H. Feng, J. Li, L. Gou, SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells. CrystEngComm 14(16), 5177 (2012)

    Article  CAS  Google Scholar 

  34. E.N. Zare, M.M. Lakouraj, P.N. Moghadam, R. Azimi, Novel polyfuran/functionalized multiwalled carbon nanotubes composites with improved conductivity: chemical synthesis, characterization, and antioxidant activity. Polym. Compos. 34(5), 732–739 (2013)

    Article  CAS  Google Scholar 

  35. E. Ozkazanc, H.Y. Guney, S. Guner, U. Abaci, Morphological and dielectric properties of barium chloride-filled poly(vinylidene fluoride) films. Polym. Compos. 31(10), 1782–1789 (2010)

    Article  CAS  Google Scholar 

  36. F. Alakhras, R. Holze, In situ UV-vis- and FT-IR-spectroscopy of electrochemically synthesized furan-thiophene copolymers. Synth. Met. 157(2–3), 109–119 (2007)

    Article  CAS  Google Scholar 

  37. A. Gok, L. Oksuz, Atmospheric pressure plasma deposition of polyfuran. J. Macromol. Sci. A 44(10), 1095–1099 (2007)

    Article  CAS  Google Scholar 

  38. D. Mo, W. Zhou, X. Ma, J. Xu, Facile electrochemical polymerization of 2-(thiophen-2-yl)furan and the enhanced capacitance properties of its polymer in acetonitrile electrolyte containing boron trifluoride diethyl etherate. Electrochim. Acta 155, 29–37 (2015)

    Article  CAS  Google Scholar 

  39. C. Bora, S.K. Dolui, Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 53(4), 923–932 (2012)

    Article  CAS  Google Scholar 

  40. M. Khairy, M.E. Gouda, Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. J. Adv. Res. 6(4), 555–562 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. Z.I. Ali, O. Ebraheem, H.H. Saleh, F.H.A. Salam, R. Sokary, In situ preparation of CdS/PVA nanocomposites using gamma radiation. Polym. Eng. Sci. 55(11), 2583–2590 (2015)

    Article  CAS  Google Scholar 

  42. V.S. Sangawar, N.A. Moharıl, Study of electrical, thermal and optical behavior of polypyrrole filled PVC:PMMA thin film thermoelectrets. Chem. Sci. Trans. 1(2), 447–455 (2012)

    Article  CAS  Google Scholar 

  43. J. Roncali, Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol. Rapid Commun. 28(17), 1761–1775 (2007)

    Article  CAS  Google Scholar 

  44. A.L. Botelho, Y. Shin, J. Liu, X. Lin, Structure and optical bandgap relationship of π-conjugated systems. PLoS ONE 9(1), e86370 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M.J. Almasi, T. Fanaei Sheikholeslami, M.R. Naghdi, Band gap study of polyaniline and polyaniline/MWNT nanocomposites with in situ polymerization method. Compos. B Eng. 96, 63–68 (2016)

    Article  CAS  Google Scholar 

  46. A. Kumara, Shalinia, G. Sharmaa, Mu. Naushadb, A. Kumara, S. Kaliac, C. Guod, G.T. Molae, Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J. Photochem. Photobiol. A 337, 118–131 (2017)

    Article  CAS  Google Scholar 

  47. A. Kumar, A. Kumar, G. Sharma, Mu. Naushad, R.C. Veses, A.A. Ghfar, F.J. Stadler, M.R. Khan, Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids. New J. Chem. 41, 10208–10224 (2017)

    Article  CAS  Google Scholar 

  48. A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, Mu. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J. 334, 462–478 (2018)

    Article  CAS  Google Scholar 

  49. U. Ay, Z. Dogruyol, N. Arsu, The effect of heavy metals on the anthracene-Me-β-cyclodextrin host-guest inclusion complexes. Supramol. Chem. 26(1), 66–70 (2014)

    Article  CAS  Google Scholar 

  50. S.W. Ho, T.K. Kwei, D. Výprachtický, Y. Okamoto, Fluorescence properties of π-conjugated polymers in porous silica. Macromolecules 36(18), 6894–6897 (2003)

    Article  CAS  Google Scholar 

  51. M.J. González-Tejera, E.S. de la Blanca, I. Carrillo, Polyfuran conducting polymers: synthesis, properties, and applications. Synth. Met. 158(5), 165–189 (2008)

    Article  CAS  Google Scholar 

  52. E. Ozkazanc, PTh/Co3O4 nanocomposites as new conducting materials for micro/nano-sized electronic devices. Polym. Eng. Sci. 57(11), 1168–1178 (2017)

    CAS  Google Scholar 

  53. S. Erdönmez, E. Ozkazanc, Power-law conductivity in polythiophene/copper(II) acetylacetonate composites. Polym. Int. 63(1), 31–36 (2014)

    Article  CAS  Google Scholar 

  54. A. Gök, B. Sari, M. Talu, Polymers, composites, and characterization of conducting polyfuran and poly(2-bromoaniline). J. Appl. Polym. Sci. 98(6), 2440–2449 (2005)

    Article  CAS  Google Scholar 

  55. G.K. Prajapati, P.N. Gupta, Conduction mechanism in un-irradiated and γ-irradiated PVA-H3PO4 polymer electrolytes. Nucl. Instrum. Methods Phys. Res. B 267(19), 3328–3332 (2009)

    Article  CAS  Google Scholar 

  56. E. Ozkazanc, S. Zor, H. Ozkazanc, U. Abaci, Electrical properties of polyaniline-manganese chloride composites. Polym. Eng. Sci. 51(4), 617–623 (2011)

    Article  CAS  Google Scholar 

  57. R. Ben Said, B. Louati, K. Guidara, S. Kamoun, Thermodynamic properties and application of CBH model in the ac conductivity of LiNi1.5P2O7 ceramic. Ionics 20(8), 1071–1078 (2014)

    Article  CAS  Google Scholar 

  58. Y. Ben Taher, N. Moutia, A. Oueslati, M. Gargouri, Electrical properties, conduction mechanism and modulus of diphosphate compounds. RSC Adv. 6(46), 39750–39757 (2016)

    Article  CAS  Google Scholar 

  59. M.F. Kotkata, F.A. Abdel-Wahab, H.M. Maksoud, Investigations of the conduction mechanism and relaxation properties of semiconductor Sm doped a-Se films. J. Phys. D 39(10), 2059–2066 (2006)

    Article  CAS  Google Scholar 

  60. M. Megdiche, C. Perrin-Pellegrino, M. Gargouri, Conduction mechanism study by overlapping large-polaron tunnelling model in SrNiP2O7 ceramic compound. J. Alloys Compd. 584, 209–215 (2014)

    Article  CAS  Google Scholar 

  61. S. Sen, A. Ghosh, Ac conductivity of strontium vanadate semiconducting glasses. J. Phys. Condens. Matter 13(9), 1979–1986 (2001)

    Article  CAS  Google Scholar 

  62. P. Dutta, S.K. De, Electrical properties of polypyrrole doped with β-naphthalenesulfonicacid and polypyrrole-polymethyl methacrylate blends. Synth. Met. 139(2), 201–206 (2003)

    Article  CAS  Google Scholar 

  63. S. Maiti, B.B. Khatua, Polyaniline integrated carbon nanohorn: a superior electrode materials for advanced energy storage. Express Polym. Lett. 8(12), 895–907 (2014)

    Article  CAS  Google Scholar 

  64. E. Ozkazanc, S. Zor, H. Ozkazanc, S. Gumus, Preparation and characterization of polypyrrole/selenium composites. Polym. Eng. Sci. 53(6), 1131–1137 (2013)

    Article  CAS  Google Scholar 

  65. J. Tahalyani, K.K. Rahangdale, K. Balasubramanian, The dielectric properties and charge transport mechanism of π-conjugated segments decorated with intrinsic conducting polymer. RSC Adv. 6, 69733–69742 (2016)

    Article  CAS  Google Scholar 

  66. I.S. Yahia, Conduction mechanism of 4-aminoantipyrine as a new organic semiconductor. Acta Phys. Pol. A 125(5), 1167–1171 (2014)

    Article  CAS  Google Scholar 

  67. M. Jaiswal, R. Menon, Polymer electronic materials: a review of charge transport. Polym. Int. 55, 1371–1384 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Research Fund of the Kocaeli University (Project No 2016/25).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made contributions and the final draft has been approved by us all.

Corresponding author

Correspondence to Ersel Ozkazanc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkazanc, E., Ozkazanc, H. & Gundogdu, O. Characterization and Charge Transport Mechanism of Multifunctional Polyfuran/Tin(IV) Oxide Composite. J Inorg Organomet Polym 28, 2108–2120 (2018). https://doi.org/10.1007/s10904-018-0887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0887-7

Keywords

Navigation