Skip to main content
Log in

Novel Multifunctional Mesoporous Microsphere with High Surface Area for Removal of Zinc Ion from Aqueous Solution: Preparation and Characterization

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Amino-functionalized magnetic mesoporous microsphere has been successfully synthesized through a two-step coating process of silica on a magnetic core (Fe3O4). In the synthesis process, cetyltrimethyl ammoniumbromide (CTAB) was used as a structure-directing agent and it was removed by combination of solvent extraction and calcination modified processes. In this method, mesoporous silica shell with higher surface area was formed which could facilitate the loading of much more amino groups and the capacity to adsorb more heavy metal ions such as Zn2+ was provided. Different amounts of 3-aminopropyl triethoxysilane (APTES) were examined in order to obtain an optimum amount of amino groups which can be grafted on Fe3O4/SiO2/meso-SiO2 microsphere. The resultant multifunctional microsphere was characterized by field emission scanning electron microscope, transmission electron microscope, FTIR spectrophotometer, X-ray diffraction, vibration sample magnetometer, thermogravimetric analysis, nitrogen adsorption–desorption and particle size analyzer. Comparing to functionalized amino group on traditional magnetic mesoporous silica, the as-prepared microsphere not only exhibited higher specific surface area (617.31 m2 g−1) but also demonstrated higher adsorption capacity for Zn(II) (270.2703 mg g−1 at 25 °C). Important of all, the adsorbent was simply removed from sample solution by magnetic field and it was regenerated by acid treatment.

Graphical Abstract

Synthetic route of Fe3O4/SiO2/meso-SiO2–NH2 and its use for Zn(II) ions removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L. Norton, K. Baskaran, T. McKenzie, Biosorption of zinc from aqueous solutions using biosolids. Adv. Environ. Res. 8, 629–635 (2004)

    Article  CAS  Google Scholar 

  2. Y.-h. Zhu, S. Yuan, D. Bao, Y.-b. Yin, H.-x. Zhong, X.-b. Zhang, J.-m. Yan, Q. Jiang, Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv. Mater. 29, 1603719-n/a (2017)

    Article  Google Scholar 

  3. A.I. Bush, Metals and neuroscience. Curr. Opin. Chem. Biol. 4, 184–191 (2000)

    Article  CAS  Google Scholar 

  4. Y. Miller, B. Ma, R. Nussinov, Zinc ions promote alzheimer Aβ aggregationvia population shift of polymorphic states. Proc Natl Acad Sci. 107, 21 (2010)

    Article  Google Scholar 

  5. J.A. Duce, A. Tsatsanis, M.A. Cater, S.A. James, E. Robb, K. Wikhe, S.L. Leong, K. Perez, T. Johanssen et al., Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in alzheimer’s disease. Cell 142, 857–867 (2010)

    Article  CAS  Google Scholar 

  6. M. del Mar Gómez-Tamayo, A. Macías-García, M.A. Díaz Díez, E.M. Cuerda-Correa, Adsorption of Zn(II) in aqueous solution by activated carbons prepared from evergreen oak (Quercus rotundifolia L.). J. Hazard. Mater. 153, 28–36 (2008)

    Article  Google Scholar 

  7. C. Wang, J. Chen, Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195–226 (2009)

    Article  Google Scholar 

  8. J. Chen, C. Wang, Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass. J. Hazard. Mater. 151, 65–70 (2008)

    Article  CAS  Google Scholar 

  9. Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi, A. Montiel, Heavy metal removal from aqueous solutions by activated phosphate rock. J. Hazard. Mater. 156, 412–420 (2008)

    Article  CAS  Google Scholar 

  10. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061–1085 (2006)

    Article  CAS  Google Scholar 

  11. H. Jiang, P. Chen, S. Luo, X. Luo, X. Tu, Q. Cao, Y. Zhou, W. Zhang, Synthesis of novel biocompatible composite Fe3O4/ZrO2/Chitosan and its application for dye removal. J. Inorg. Organomet. Polym. Mater. 23, 393–400 (2013)

    Article  CAS  Google Scholar 

  12. E. Cerrahoğlu, A. Kayan, D. Bingöl, New inorganic–organic hybrid materials and their oxides for removal of heavy metal ions: response surface methodology approach. J. Inorg. Organomet. Polym. Mater. 27, 427–435 (2017)

    Article  Google Scholar 

  13. E. Vunain, A.K. Mishra, R.W. Krause, Fabrication, characterization and application of polymer nanocomposites for arsenic(iii) removal from water. J. Inorg. Organomet. Polym. Mater. 23, 293–305 (2013)

    Article  CAS  Google Scholar 

  14. A.S.S. Frank Caruso, G. Michael, M. Helmuth, Magnetic core–shell particles: preparation of magnetite multilayers on polymer latex microspheres. Am. Chem. Soc. 11, 950–953 (1999)

    Google Scholar 

  15. N.H. Desheng Wang, R. Nista, R. Zeev, Superparamagnetic Fe2O3 beads–CdSe/ZnS quantum dots core–shell nanocomposite particles for cell separation. Nano Lett. 4, 409–413 (2004)

    Article  Google Scholar 

  16. Y.D. Lan Jin, J. Hu, C. Wang, Preparation and characterization of core–shell polymer particles with protonizable shells prepared by oxyanionic polymerization. Polym. Sci. A 42, 6081–6088 (2004)

    Article  Google Scholar 

  17. Y.D. Wei Li, W. Zhangxiong, X. Qian, J. Yang, Y. Wang, G. Dong, F. Zhang, B. Tu, D. Zhao, Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. Am. Chem. Soc. 133, 15830–15833 (2011)

    Article  Google Scholar 

  18. J.G. Wenru Zhao, L. Zhang, H. Chen, J. Shi, Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. Am. Chem. Soc. 127, 8916–8917 (2005)

    Article  Google Scholar 

  19. E. Khosroshahi, M.L. Ghazanfari, Synthesis and functionalization of SiO2 coated Fe3O4 nanoparticles with amine groups based on self-assembly. Mater. Sci. Eng. 32, 1043–1049 (2012)

    Article  CAS  Google Scholar 

  20. W. Mokaya, R. Jones, Physicochemical characterisation and catalytic activity of primary amine templated aluminosilicate mesoporous catalysts. J. Catal. 172, 211–221 (1997)

    Article  CAS  Google Scholar 

  21. R. Hitz, S. Prins, Influence of template extraction on structure, activity, and stability of MCM-41 catalysts. J. Catal. 168, 194–206 (1997)

    Article  CAS  Google Scholar 

  22. T. Tanev, P.T.J. Pinnavaia, Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties. Chem. Mater. 8, 2068–2079 (1996)

    Article  CAS  Google Scholar 

  23. B. Stein, A. Holland, Aluminum-containing mesostructural materials. J. Porous. Mater. 3, 83–92 (1996)

    Article  CAS  Google Scholar 

  24. M.T. Keene, R.D. Gougeon, R. Denoyel, R.K. Harris, J. Rouquerol, P.L. Llewellyn, Calcination of the MCM-41 mesophase: mechanism of surfactant thermal degradation and evolution of the porosity. J. Mater. Chem. 9, 2843–2849 (1999)

    Article  CAS  Google Scholar 

  25. W.A. Gomes Jr., L.A.M. Cardoso, A.R.E. Gonzaga, L.G. Aguiar, H.M.C. Andrade, Influence of the extraction methods to remove organic templates from Al-MCM-41 molecular sieves. Mater. Chem. Phys. 93, 133–137 (2005)

    Article  CAS  Google Scholar 

  26. W. Mokaya, R. Jones, The influence of template extraction on the properties of primary amine templated aluminosilicate mesoporous molecular sieves. J. Mater. Chem. 8, 2819–2826 (1998)

    Article  CAS  Google Scholar 

  27. M. Kumar, D.P.S. Rathore, A.K. Singh, Amberlite XAD-2 functionalized with o-aminophenol: synthesis and applications as extractant for copper(II), cobalt(II), cadmium(II), nickel(II), zinc(II) and lead(II). Talanta 51, 1187–1196 (2000)

    Article  CAS  Google Scholar 

  28. K.L.Y. Koon Fung Lam, G. McKay, Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity. Environ. Sci. Technol. 41, 3329 (2007)

    Article  Google Scholar 

  29. J. Li, X. Miao, Y. Hao, J. Zhao, X. Sun, L. Wang, Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(VI). J. Colloid Interface Sci. 318, 309–314 (2008)

    Article  CAS  Google Scholar 

  30. C. Sun, R. Qu, C. Ji, C. Wang, Y. Sun, Z. Yue, G. Cheng, Preparation and adsorption properties of crosslinked polystyrene-supported low-generation diethanolamine-typed dendrimer for metal ions. Talanta 70, 14–19 (2006)

    Article  CAS  Google Scholar 

  31. P. Yang, Z. Quan, Z. Hou, C. Li, X. Kang, Z. Cheng, J. Lin, A magnetic, luminescent and mesoporous core–shell structured composite material as drug carrier. Biomaterials 30, 4786–4795 (2009)

    Article  CAS  Google Scholar 

  32. Z. Li, D. Huang, C. Fu, B. Wei, W. Yu, C. Deng, X. Zhang, Preparation of magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for fast extraction and analysis of phthalates in water samples. J. Chromatogr. A 1218, 6232–6239 (2011)

    Article  CAS  Google Scholar 

  33. L. Zhao, Y. Chi, Q. Yuan, N. Li, W. Yan, X. Li, Phosphotungstic acid anchored to amino–functionalized core–shell magnetic mesoporous silica microspheres: a magnetically recoverable nanocomposite with enhanced photocatalytic activity. J. Colloid Interface Sci. 390, 70–77 (2013)

    Article  CAS  Google Scholar 

  34. F. Aboufazeli, H.R.L.Z. Zhad, O. Sadeghi, M. Karimi, E. Najafi, Novel ion imprinted polymer magnetic mesoporous silica nano-particles for selective separation and determination of lead ions in food samples. Food. Chem. 141, 3459–3465 (2013)

    Article  CAS  Google Scholar 

  35. W. Li, B. Zhang, X. Li, H. Zhang, Q. Zhang, Preparation and characterization of novel immobilized Fe3O4@SiO2@mSiO2–Pd(0) catalyst with large pore-size mesoporous for Suzuki coupling reaction. Appl. Catal. A 459, 65–72 (2013)

    Article  CAS  Google Scholar 

  36. A.S.S. Ibrahim,, A.A. Al-Salamah, A.M. El-Toni, M.A. El-Tayeb, Y.B. Elbadawi, Cyclodextrin glucanotransferase immobilization onto functionalized magnetic double mesoporous core–shell silica nanospheres. Electron. J. Biotechnol. 17, 55–64 (2014)

    Article  Google Scholar 

  37. X. Li, W. Zhao, J. Gu, Y. Li, L. Li, D. Niu, J. Shi, Facile synthesis of magnetic core-mesoporous shell structured sub-microspheres decorated with NiO nanoparticles for magnetic recyclable separation of proteins. Microporous Mesoporous Mater. 207, 142–148 (2015)

    Article  CAS  Google Scholar 

  38. W.-H. Chen, G.-F. Luo, Q. Lei, F.-Y. Cao, J.-X. Fan, W.-X. Qiu, H.-Z. Jia, S. Hong, F. Fang et al., Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 76, 87–101 (2016)

    Article  CAS  Google Scholar 

  39. S. Bao, L. Tang, K. Li, P. Ning, J. Peng, H. Guo, T. Zhu, Y. Liu, Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent. J. Colloid Interface Sci. 462, 235–242 (2016)

    Article  CAS  Google Scholar 

  40. Z. Sun, H. Li, G. Cui, Y. Tian, S. Yan, Multifunctional magnetic core–shell dendritic mesoporous silica nanospheres decorated with tiny Ag nanoparticles as a highly active heterogeneous catalyst, Appl. Surf. Sci. 360, 252–262 (2016)

    Article  CAS  Google Scholar 

  41. M. Koneracká, P. Kopčanský, M. Antalík, M. Timko, C.N. Ramchand, D. Lobo, R.V. Mehta, R.V. Upadhyay, Immobilization of proteins and enzymes to fine magnetic particles. J. Magn. Magn. Mater. 201, 427–430 (1999)

    Article  Google Scholar 

  42. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  43. M. Seenuvasan, C.G. Malar, S. Preethi, N. Balaji, J. Iyyappan, M.A. Kumar, K.S. Kumar, Fabrication, characterization and application of pectin degrading Fe3O4–SiO2 nanobiocatalyst. Mater. Sci. Eng. 33, 2273–2279 (2013)

    Article  CAS  Google Scholar 

  44. Xu, J.-J., Wang, Z.-L., Xu, D., L.-L. Zhang, X.-B. Zhang, Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 4, 2438 (2013)

    Google Scholar 

  45. J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li-O2 batteries with enhanced rate capability and cyclic performance. Energy Environ. Sci. 7, 2213–2219 (2014)

    Article  CAS  Google Scholar 

  46. Y.-B. Yin, J.-J. Xu, Q.-C. Liu, X.-B. Zhang, Macroporous interconnected hollow carbon nanofibers inspired by golden-toad eggs toward a binder-free, high-rate, and flexible electrode. Adv. Mater. 28, 7494–7500 (2016)

    Article  CAS  Google Scholar 

  47. Q. Yuan, Y. Chi, N. Yu, Y. Zhao, W. Yan, X. Li, B. Dong, Amino-functionalized magnetic mesoporous microspheres with good adsorption properties. Mater. Res. Bull. 49, 279–284 (2014)

    Article  CAS  Google Scholar 

  48. Y. Tang, S. Liang, J. Wang, S. Yu, Y. Wang, Amino-functionalized core-shell magnetic mesoporous composite microspheres for Pb(II) and Cd(II) removal. J. Environ. Sci. 25, 830–837 (2013)

    Article  CAS  Google Scholar 

  49. Z. Xu, Y. Feng, X. Liu, M. Guan, C. Zhao, H. Zhang, Synthesis and characterization of Fe3O4@SiO2@ poly-l-alanine, peptide brush–magnetic microspheres through NCA chemistry for drug delivery and enrichment of BSA. Colloids Surf. B 81, 503–507 (2010)

    Article  CAS  Google Scholar 

  50. L. Wang, Y. Sun, J. Wang, J. Wang, A. Yu, H. Zhang, D. Song, Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloids Surf. B Biointerfaces 84, 484–490 (2011)

    Article  CAS  Google Scholar 

  51. S.N. Abdollahi, M. Naderi, G. Amoabediny, Synthesis and physicochemical characterization of tunable silica–gold nanoshells via seed growth method. Colloids Surf. A 414, 345–351 (2012)

    Article  CAS  Google Scholar 

  52. D. Shao, K. Xu, X. Song, J. Hu, W. Yang, C. Wang, Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@silica core/shell microspheres. J. Colloid. Interface Sci. 336, 526–532 (2009)

    Article  CAS  Google Scholar 

  53. T.S. Sasikala, S. Raman, P. Mohanan, C. Pavithran, M.T. Sebastian, Effect of silane coupling agent on the dielectric and thermal properties of DGEBA-forsterite composites. J. Polym. Res. 18, 811–819 (2010)

    Article  Google Scholar 

  54. P. Xu, H. Wang, R. Tong, Q. Du, W. Zhong, Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization. Colloid. Polym. Sci. 284, 755–762 (2006)

    Article  CAS  Google Scholar 

  55. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, Amino-functionalized Fe(3)O(4)@SiO(2) core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J. Colloid. Interface Sci. 349, 293–299 (2010)

    Article  CAS  Google Scholar 

  56. X. Zhang, H. Niu, Y. Pan, Y. Shi, Y. Cai, Modifying the surface of Fe3O4/SiO2 magnetic nanoparticles with C18/NH2 mixed group to get an efficient sorbent for anionic organic pollutants. J. Colloid. Interface Sci. 362, 107–112 (2011)

    Article  CAS  Google Scholar 

  57. S. Hozhabr Araghi, M.H. Entezari, M. Chamsa, Modification of mesoporous silica magnetite nanoparticles by 3-aminopropyltriethoxysilane for the removal of Cr(VI) from aqueous solution. Microporous Mesoporous Mater. 218, 101–111 (2015)

    Article  CAS  Google Scholar 

  58. M. Rosenholm, J., M. Lindén, Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J. Control. Release 128, 157–164 (2008)

    Article  CAS  Google Scholar 

  59. K.K. Sharma, A. Anan, R.P. Buckley, W. Ouellette, T. Asefa, Toward efficient nanoporous catalysts: controlling site-isolation and concentration of grafted catalytic sites on nanoporous materials with solvents and colorimetric elucidation of their site-isolation. J. Am. Chem. Soc. 130, 218–228 (2008)

    Article  CAS  Google Scholar 

  60. T. Yokoi, H. Yoshitake, T. Tatsumi, Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes”. J. Mater. Chem. 14, 951–957 (2004)

    Article  CAS  Google Scholar 

  61. Z. Lei, Y. Li, X. Wei, A facile two-step modifying process for preparation of poly(SStNa)-grafted Fe3O4/SiO2 particles. J. Solid State Chem. 181, 480–486 (2008)

    Article  CAS  Google Scholar 

  62. Y.-M. Hao, C. Man, Z.-B. Hu, Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J. Hazard. Mat. 184, 392–399 (2010)

    Article  CAS  Google Scholar 

  63. M. Monier, D.M. Ayad, Y. Wei, A.A. Sarhan, Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J. Hazard. Mat. 177, 962–970 (2010)

    Article  CAS  Google Scholar 

  64. M. Mureseanu, A. Reiss, I. Stefanescu, E. David, V. Parvulescu, G. Renard, V. Hulea, Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 73, 1499–1504 (2008)

    Article  CAS  Google Scholar 

  65. H. Karami, Heavy metal removal from water by magnetite nanorods. Chem. Eng. J. 219, 209–216 (2013)

    Article  CAS  Google Scholar 

  66. M. Adeli, Y. Yamini, M. Faraji, Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab. J. Chem. 10, s514–s521 (2017)

    Article  CAS  Google Scholar 

  67. F. Ge, M.-M. Li, H. Ye, B.-X. Zhao, Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mat. 211–212, 366–372 (2012)

    Article  Google Scholar 

  68. Y. Zhu, J. Hu, J. Wang, Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J. Hazard. Mater. 221–222, 155–161 (2012)

    Article  Google Scholar 

  69. F. An, B. Gao, X. Dai, M. Wang, X. Wang, Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent. J. Hazard. Mat. 192, 956–962 (2011)

    Article  CAS  Google Scholar 

  70. D. Adamczuk, A. Kołodyńska, Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chem. Eng. J. 274, 200–212 (2015)

    Article  CAS  Google Scholar 

  71. L. Jiang, S. Li, H. Yu, Z. Zou, X. Hou, F. Shen, C. Li, X. Yao, Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl. Surf. Sci. 369, 398–413 (2016)

    Article  CAS  Google Scholar 

  72. S. Lapwanit, T. Trakulsujaritchok, P.N. Nongkhai, Chelating magnetic copolymer composite modified by click reaction for removal of heavy metal ions from aqueous solution. Chem. Eng. J. 289, 286–295 (2016)

    Article  CAS  Google Scholar 

  73. J. Zhang, S. Zhai, S. Li, Z. Xiao, Y. Song, Q. An, G. Tian, Pb(II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chem. Eng. J. 215–216, 461–471 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Ghodratollah Absalan, Professor Masoumi Laboratory, Department of chemistry, collage of science, Shiraz University, for his kind assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Hassanajili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheshti, Z., Hassanajili, S. Novel Multifunctional Mesoporous Microsphere with High Surface Area for Removal of Zinc Ion from Aqueous Solution: Preparation and Characterization. J Inorg Organomet Polym 27, 1613–1626 (2017). https://doi.org/10.1007/s10904-017-0621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0621-x

Keywords

Navigation