Skip to main content
Log in

RETRACTED ARTICLE: Tokamak Coils Materials and Toroidal Field Ripples Calculation Using the Comsol Multiphysics

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

This article was retracted on 03 May 2023

This article has been updated

Abstract

The ITER superconducting magnet systems consists of four main sub-systems: toroidal field (TF) coils, central solenoid coils, poloidal field coils, and correction coils. Like many other ITER systems, the magnet components are supplied in-kind by six domestic agencies. The technical specifications, manufacturing processes and procedures required to fabricate these components are particularly challenging. The management structure and organization to realize this procurement within the tight ITER construction schedule is very complex. On the other hand, toroidal magnetic field ripple in tokamak is an important issue in plasma equilibrium and stability studies. Toroidal magnetic field is created by toroidal torus with finite number of coils, therefore the field has a ripple in torus space. In this paper, we have reviewed the ITER magnetic coils materials, and also we have estimated the amplitude of TF ripples and its dependence to numbers of coils using the “Comsol Multiphysics” software. The calculations which performed for three: 8, 16 and 32 toroidal coils, indicates that increasing the number of toroidal coils lead to reduction of magnetic field ripple and lead to more stable plasma, but diagnostic access to plasma is reduces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. J. Wesson, Tokamaks, 3rd edn. (Clarendon Press, Oxford, 2004)

  2. J.P. Freidberg, Plasma Physics and Fusion Energy (MIT Press, Cambridge, 2002)

  3. C.C. Petty et al., Nucl. Fusion 44(2), 243 (2004)

    Article  CAS  Google Scholar 

  4. M. Spolaore et al., Czech J. Phys. 55(12), 1615–1621 (2005)

    Article  Google Scholar 

  5. P. Devynck et al., Phys. Plasmas 13(10), 102505–102513 (2006)

    Article  Google Scholar 

  6. A. Salar Elahi, IEEE Trans. Plasma Sci. 40, 892–897 (2012)

    Article  Google Scholar 

  7. B. Viatcheslav et al., J. Plasma Fusion Res. 5, 418–423 (2002)

    Google Scholar 

  8. E.Y. Wang et al., Nucl. Fusion 35, 467 (1995)

    Article  CAS  Google Scholar 

  9. ChP Ritz et al., Rev. Sci. Instrum. 59, 1739–1744 (1998)

    Article  Google Scholar 

  10. V.V. Bulanin et al., Plasma Phys. Control. Fusion 48, A101 (2006)

    Article  Google Scholar 

  11. J.A.C. Cabral et al., Plasma Phys. Control. Fusion 40, 1001 (1998)

    Article  CAS  Google Scholar 

  12. C. Silva et al. 17th IAEA Fusion Energy Conference, EX/P1-10 Lyon, France (2002)

  13. A. Salar Elahi, IEEE Trans. Plasma Sci. 38(2), 181–185 (2010)

    Article  Google Scholar 

  14. A. Salar Elahi, IEEE Trans. Plasma Sci. 38(9), 3163–3167 (2010)

    Article  Google Scholar 

  15. M. Emami, M. Ghoranneviss, A. Salar Elahi, A.R. Rad, J. Plasma Phys. 76(1), 1–8 (2009)

    Google Scholar 

  16. A. Salar Elahi, Fusion Eng. Des. 85, 724–727 (2010)

    Article  CAS  Google Scholar 

  17. A. Salar Elahi, Phys. Scr. 80, 045501 (2009)

    Article  Google Scholar 

  18. A. Salar Elahi, Phys. Scr. 80, 055502 (2009)

    Article  Google Scholar 

  19. A. Salar Elahi, Phys. Scr. 81(5), 055501 (2010)

    Article  Google Scholar 

  20. A. Salar Elahi, Phys. Scr. 82, 025502 (2010)

    Article  Google Scholar 

  21. M. Ghoranneviss, A. Salar Elahi, Phys. Scr. 82(3), 035502 (2010)

    Article  Google Scholar 

  22. A. Salar Elahi, J. Fusion Energy 28(4), 346–349 (2009)

    Article  CAS  Google Scholar 

  23. A. Salar Elahi, J. Fusion Energy 28(4), 416–419 (2009)

    Article  CAS  Google Scholar 

  24. A. Salar Elahi, J. Fusion Energy 28(4), 408–411 (2009)

    Article  Google Scholar 

  25. A. Salar Elahi, J. Fusion Energy 28(4), 412–415 (2009)

    Article  CAS  Google Scholar 

  26. A. Salar Elahi, J. Fusion Energy 28(4), 394–397 (2009)

    Article  CAS  Google Scholar 

  27. A. Salar Elahi, J. Fusion Energy 28(4), 404–407 (2009)

    Article  CAS  Google Scholar 

  28. A. Salar Elahi, J. Fusion Energy 28(4), 390–393 (2009)

    Article  Google Scholar 

  29. A. Salar Elahi, J. Fusion Energy 28(4), 385–389 (2009)

    Article  CAS  Google Scholar 

  30. A.R. Rad, M. Ghoranneviss, M. Emami, A. Salar Elahi, J. Fusion Energy 28(4), 420–426 (2009)

    Article  Google Scholar 

  31. A. Salar Elahi, J. Fusion Energy 29(1), 1–4 (2010)

    Article  CAS  Google Scholar 

  32. A. Salar Elahi, J. Fusion Energy 29(1), 22–25 (2010)

    Article  Google Scholar 

  33. A. Salar Elahi, J. Fusion Energy 29(1), 29–31 (2010)

    Article  CAS  Google Scholar 

  34. A. Salar Elahi, J. Fusion Energy 29(1), 26–28 (2010)

    Article  CAS  Google Scholar 

  35. A. Salar Elahi, J. Fusion Energy 29(1), 32–35 (2010)

    Article  CAS  Google Scholar 

  36. A. Salar Elahi, J. Fusion Energy 29(1), 36–40 (2010)

    Article  CAS  Google Scholar 

  37. A. Salar Elahi, J. Fusion Energy 29(1), 62–64 (2010)

    Article  CAS  Google Scholar 

  38. A. Salar Elahi, J. Fusion Energy 29(1), 76–82 (2010)

    Article  CAS  Google Scholar 

  39. A.R. Rad, M. Emami, M. Ghoranneviss, A. Salar Elahi, J. Fusion Energy 29(1), 73–75 (2010)

    Article  Google Scholar 

  40. A. Salar Elahi, J. Fusion Energy 29(1), 83–87 (2010)

    Article  CAS  Google Scholar 

  41. A. Salar Elahi, J. Fusion Energy 29(1), 88–93 (2010)

    Article  CAS  Google Scholar 

  42. A. Salar Elahi, J. Fusion Energy 29(3), 209–214 (2010)

    Article  CAS  Google Scholar 

  43. A. Salar Elahi, J. Fusion Energy 29(3), 232–236 (2010)

    Article  Google Scholar 

  44. A. Salar Elahi, J. Fusion Energy 29(3), 251–255 (2010)

    Article  CAS  Google Scholar 

  45. A. Salar Elahi, J. Fusion Energy 29(3), 279–284 (2010)

    Article  CAS  Google Scholar 

  46. M. Ghoranneviss, A. Salar Elahi, J. Fusion Energy 29(5), 467–470 (2010)

    Article  CAS  Google Scholar 

  47. A. Salar Elahi, J. Fusion Energy 29(5), 461–465 (2010)

    Article  CAS  Google Scholar 

  48. A. Salar Elahi, Braz. J Phys. 40(3), 323–326 (2010)

    Article  Google Scholar 

  49. A. Salar Elahi, J. Fusion Energy 30(2), 116–120 (2011)

    Article  CAS  Google Scholar 

  50. A. Salar Elahi, J. Fusion Energy 30(6), 477–480 (2011)

    Article  CAS  Google Scholar 

  51. A. Salar Elahi, Fusion Eng. Des. 86, 442–445 (2011)

    Article  Google Scholar 

  52. A. Salar Elahi, J. Fusion Energy 31(2), 191–194 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salar Elahi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavipour, B., Salar Elahi, A. & Ghoranneviss, M. RETRACTED ARTICLE: Tokamak Coils Materials and Toroidal Field Ripples Calculation Using the Comsol Multiphysics. J Inorg Organomet Polym 26, 439–445 (2016). https://doi.org/10.1007/s10904-015-0325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0325-z

Keywords

Navigation