Skip to main content
Log in

Viscoelastic Properties of Montmorillonite Clay/Polyimide Composite Membranes and Thin Films

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Montmorillonite clay, cloisite 30B (nanoclay), was successfully dispersed in a polyimide (PI) matrix by in situ condensation polymerization followed by solution casting and thermal imidization. Wide angle X-ray diffraction, WAXD, test was used to study the structure of cloisite 30B clay powder and nanoclay/polyimide composites. The WAXD spectra of nanoclay powder and the composites show one major diffraction peak at 4.76° and 6°, respectively, suggesting that the d-spacing of nanoclay was decreased by about 26% after composite film processing. The viscoelastic property of polyimide and nanoclay/polyimide composite was studied by using dynamic mechanical spectrometer. The storage modulus and glass–rubber transition temperature of nanoclay/polyimide composites increases with increasing volume fraction of clay. The storage modulus of the composites in the rubbery plateau region, (T > 400 °C) increased remarkably with increasing volume fraction of clay. A modulus enhancement, (EC/EM) of about three orders of magnitude, (EC/EM ~1,440) was obtained for nanoclay/polyimide composite containing 6.8 vol% of nanoclay. The tangent of the loss angle (tan δ) for the composites, decreased with increasing volume fraction of nanoclay. The observed decrease in tan δ with increasing volume fraction of clay is consistent with the established trend of increasing storage modulus and glass–rubber transition temperature with increasing volume fraction of nanoclay. The phenomenal increase in the rubbery plateau storage modulus and glass–rubber transition temperature with increasing volume fraction of clay is believed to be due to increased restriction of chain motion with increasing nanoclay volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Han, K.H. Rew, I. Lee, Smart Mater. Struct. 6, 549–558 (1997)

    Article  Google Scholar 

  2. J.J. Hollkamp, R.W. Gordon, Smart Mater. Struct. 5, 715–722 (1996)

    Article  Google Scholar 

  3. R. Fan, G. Meng, J. Yang, C. He, Transp. Res. D 13, 213–220 (2008)

    Article  Google Scholar 

  4. W.H. Liao, K.W. Wang, J. Sound Vib. 207(3), 319–334 (1997)

    Article  Google Scholar 

  5. H. Kishi, M. Kuwata, S. Matsuda, T. Asami, A. Murakami, Compos. Sci. Technol. 64(16), 2517–2523 (2004)

    Article  CAS  Google Scholar 

  6. D. Davino, A. Giustiniani, C. Visone, A. Adly, J. Appl. Phys. 109, 07E509 (2011)

    Article  Google Scholar 

  7. F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler, K. Schulte, Compos. Sci. Technol. 64(15), 2363–2371 (2004)

    Article  CAS  Google Scholar 

  8. D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 76(20), 2868–2870 (2000)

    Article  CAS  Google Scholar 

  9. J. Gou, S. O’Braint, H. Gu, G. Song, J. Nano. Mater. 32803, 1–7 (2006)

    Article  Google Scholar 

  10. A. Liu, J.H. Huang, K.W. Wang, C.E. Bakis, J. Intell. Mater. Syst. Struct. 17, 217–222 (2005)

    Article  Google Scholar 

  11. C. Holst, J. Sound Vib. 231, 839–846 (1998)

    Google Scholar 

  12. Y. Sugahara, T. Takigami, A. Kazato, Jpn. Soc. Mech. Eng. Part C 72, 2762–2769 (2006)

    Article  Google Scholar 

  13. M.D. Rao, J. Sound Vib. 26, 457–474 (2000)

    Google Scholar 

  14. K.E. Wise, C. Park, E.J. Siochi, J.S. Harrison, Stable dispersion of single wall carbon nanotubes in polymide: the role of noncovalent interactions. Chem. Phys. Lett. 391, 207–211 (2004)

    Article  CAS  Google Scholar 

  15. I.M. Ward, D.W. Handley, An Introduction to the Mechanical Properties of Solid Polymers (Wiley, Chichester, 1993)

    Google Scholar 

  16. S. Gupta, P.R. Mantena, A. Al-Ostaz, J. Reinf. Plast. Compos. 29, 2037 (2009)

    Article  Google Scholar 

  17. S.G. Kuzak, A. Shanmugam, J. Appl. Polym. Sci. 73, 649–658 (1999)

    Article  CAS  Google Scholar 

  18. J. Suhr, N. Koratkar, P. Keblinski, P. Ajayan, Viscoelasticity in carbon nanotube composites. Nat. Mater. 4, 134–137 (2005)

    Article  CAS  Google Scholar 

  19. G.X. Chen, H.S. Kim, B.H. Park, J.S. Yoon, Polymer 47, 4760–4767 (2006)

    Article  CAS  Google Scholar 

  20. X. Zhang, T. Liu, T.V. Sreekumar, S. Kumar, V.C. Moore, R.H. Hauge et al., Nano Lett. 9, 1285 (2003)

    Article  Google Scholar 

  21. P.K. Mallick, Fiber-Reinforced Composites (Marcel Dekker, New York, 1993), p. 130

    Google Scholar 

  22. H.H. Smallwood, J. Appl. Phys. 15, 758–766 (1944)

    Article  CAS  Google Scholar 

  23. A.J. Zhu, S.S. Sternstein, Compos. Sci. Technol. 63, 1113–1126 (2003)

    Article  CAS  Google Scholar 

  24. D.P.N. Vlasvelda, P.P. Parlevliet, H.E.N. Bersee, S.J. Picken, Fibre–matrix adhesion in glass-fibre reinforced polyamide-6 silicate nanocomposites. Compos. A 36, 1–11 (2005)

    Google Scholar 

  25. T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay nano composites using composite theories. Polymer 44, 4993–5013 (2003)

    Article  CAS  Google Scholar 

  26. B.D. Agarwal, L.J. Broutman, H. Chandrashekhara, Analysis and Performance of Fiber Composites, 3rd edn. (Wiley, New York, 2006)

    Google Scholar 

  27. O.L. Manevitch, G.C. Rutledge, J. Phys. Chem. B 108, 1428 (2004)

    Article  CAS  Google Scholar 

  28. S.S. Ray, M. Okamoto, Polymer/layered silicate nano composites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  CAS  Google Scholar 

  29. D.W. Schaefer, R.S. Justice, How nano are nano composites. Macromolecules 40, 24 (2007)

    Article  Google Scholar 

  30. T.A. Witten, M. Rubinstein, R.H. Colby, Reinforcement of rubber by fractal aggregates. J. Phys. II Fr. 3, 367 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support provided by the National Science Foundation, NSF, NSF-CMMI 0758656, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Iroh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iroh, J.O., Longun, J. Viscoelastic Properties of Montmorillonite Clay/Polyimide Composite Membranes and Thin Films. J Inorg Organomet Polym 22, 653–661 (2012). https://doi.org/10.1007/s10904-011-9613-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-011-9613-4

Keywords

Navigation