Skip to main content

Advertisement

Log in

Study on the Performance of Zn,N/TiO2 Anode Film and Co-Sensitization in DSSC

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Zn,N-TiO2 powder was prepared using TiCl4 as the precursor. XRD, TEM and CV characterizations show Zn,N have been doped into nano-crystal TiO2 successfully, and the absorbance range of TiO2 anode red-shift to the visible region. Zn,N doped-TiO2 anode film was first prepared by combined technology. Ultraviolet–Visible (UV–Vis) chararterization proved there is a complementarity in UV–Vis absorbance range between poly (3-dodecylthiophene) (P3DDT) and N719. Solar cell based on Zn,N-TiO2 was first co-sensitized by P3DDT and N719. A solar-to-electric energy conversion efficiency of 3.25% was attained with the system. The photoelectric conversion efficiency, Voc and Jsc have been all increased compare to the single dye-sensitized solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)

    Article  CAS  Google Scholar 

  2. Q.-H. Yao, F.-S. Meng, F.-Y. Li, H. Tian, C.-H. Haung, J. Mater. Chem. 13, 1048 (2003)

    Article  CAS  Google Scholar 

  3. Y.-S. Chen, C. Li, Z.-H. Zeng, W.-B. Wang, X.-S. Wang, B.-W. Zhang, J. Mater. Chem. 15, 246 (2005)

    Google Scholar 

  4. K. R. J. Thomas, J. T. Lin, Y.-C. Hsu, K.-C. Ho, Chem. Commun. 4098 (2005)

  5. D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeld, L. Sun, Chem. Commun. 2245 (2006)

  6. T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 126, 12218 (2004)

    Article  CAS  Google Scholar 

  7. K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, Chem. Commun. 569 (2001)

  8. K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Chem. Commun. 252 (2003)

  9. K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, New J. Chem. 27, 783 (2003)

    Article  CAS  Google Scholar 

  10. Z.-S. Wang, F.-Y. Li, C.-H. Hang, L. Wang, M. Wei, L.-P. Jin, N.-Q. Li, J. Phys. Chem. B 104, 9676 (2000)

    Article  CAS  Google Scholar 

  11. A. Ehret, L. Stuhl, M.T. Spitler, J. Phys. Chem. B 105, 9960 (2001)

    Article  CAS  Google Scholar 

  12. K. Hara, T. Sato, R. Katho, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 107, 597 (2003)

    Article  CAS  Google Scholar 

  13. S.-L. Li, K.-J. Jiang, K.-F. Shao and L.-M. Yang, Chem. Commun. 2792 (2006)

  14. B. O′Regan, M. Gratzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  15. P.M. Sommeling, B.C. O′Regan, R.R. Haswell et al., J. Phys. Chem. B 110(39), 19191 (2006)

    Article  CAS  Google Scholar 

  16. Z.S. Wang, F.Y. Li, C.H. Huang, J. Phys. Chem. B 105(38), 9210 (2001)

    Article  CAS  Google Scholar 

  17. S.C. Hao, J.H. Wu, L.Q. Fan et al., Sol. Energy 76(6), 745 (2004)

    Article  CAS  Google Scholar 

  18. B.A. Gregg, S.G. Chen, S. Ferrere, J. Phys. Chem. B 107(13), 3019 (2003)

    Article  CAS  Google Scholar 

  19. B. Peng, G. Jungmann, C. Jager et al., Coord. Chem. Rev. 248(13–14), 1479 (2004)

    Article  CAS  Google Scholar 

  20. G.K. Mor, K. Shankar, M. Paulose et al., Nano Lett. 6(2), 215–218 (2006)

    Article  CAS  Google Scholar 

  21. T. Lindgren, J.M. Mwabora, E. Avendano et al., J. Phys. Chem. B. 107(24), 5709–5716 (2003)

    Article  CAS  Google Scholar 

  22. T.L. Akiyama et al., Nano Lett. 5(12), 2543–2547 (2005)

    Article  Google Scholar 

  23. S.R. Vittal, R. Kim, Langmuir 20(22), 9807–9810 (2004)

    Article  Google Scholar 

  24. J. Bandara, H.C. Weerasinghe, Sol. Energy Mater. Sol. Cells 88(4), 341–350 (2005)

    Article  CAS  Google Scholar 

  25. T. Horiuchi, H. Miura, S. Uchida, J. Photochem. Photobiol. A 164(1–3), 29 (2004)

    Article  CAS  Google Scholar 

  26. S. Ito, S.M. Zakeeruddin, R. Humphry-Baker et al., Adv. Mater. 18(9), 1202 (2006)

    Article  CAS  Google Scholar 

  27. P. Wang, S. Zakeeruddin, M. Exnar et al., Chem. Commun. 24, 2972–2973 (2002)

    Article  Google Scholar 

  28. P. Wang, S.M. Zakeeruddin, P. Comte et al., J. Am. Chem. Soc. 125(5), 1166–1167 (2003)

    Article  CAS  Google Scholar 

  29. P. Wang, S.M. Zakeeruddin, R. Humphry-Baker et al., Chem. Mater. 16(14), 2694 (2004)

    Article  CAS  Google Scholar 

  30. M. Gratzel, Coord. Chem. Rev. 111, 167 (1991)

    Article  Google Scholar 

  31. M. Gratzel, J. Photochem. Photobiol. A 164(1–3), 3 (2004)

    Article  CAS  Google Scholar 

  32. G.P. Smestad, S. Spiekermann, J. Kowalik, C.D. Grant, A.M. Schwartzberg, J. Zhang, L.M. Tolbert, E. Moons, A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices. Sol. Energy Mater. Sol. Cells 76, 85–105 (2003)

    Article  CAS  Google Scholar 

  33. K. Takahashi, Y. Takano, T. Yamaguchi, J.-I. Nakamura, C. Yokoe, K. Murata, Porphyrin dye-sensitization of polythiophene in a conjugated polymer/TiO2 p–n hetero-junction solar cell. Synth. Met. 155, 51–55 (2005)

    Article  CAS  Google Scholar 

  34. L.B. Roberson, M.A. Poggi, J. Kowalik, G.P. Smestad, L.A. Bottomley, L.M. Tolbert, Correlation of morphology and device performance in inorganic–organic TiO2–polythiophene hybrid solid-state solar cells. Coord. Chem. Rev. 248, 1491–1499 (2004)

    Article  CAS  Google Scholar 

  35. W. Lee, S.-J. Roh, K.-H. Hyung, J. Park, S.-H. Lee, S.-H. Han, Photoelectrochemically polymerized polythiophene layers on ruthenium photosensitizers in dye-sensitized solar cells and their beneficial effects. Sol. Energy 83, 690–695 (2009)

    Article  CAS  Google Scholar 

  36. Z. Han, J. Zhang, X. Yang, H. Zhu, W. Cao, Synthesis and photoelectric property of poly (3-octylthiophene)/zinc oxide complexes. Sol. Energy Mater. Sol. Cells 94, 194–200 (2010)

    Article  CAS  Google Scholar 

  37. Z. Han, J. Zhang, X. Yang, H. Zhu, W. Cao, Synthesis and photoelectric property of poly (3-octylthiophene)/titanium dioxide nano-composite material. J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-009-9956-6(in press)

  38. O. Diwald, T.L. Thompson, T. Zubkov et al., Photochemical activity of nitrogen-doped rutile TiO2(110)in visible light. Phys. Chem. B 108, 6004 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program) under grant no. 2006AA03z412, the Department of Education Research Project of Hainan under grant no. Hj2010-52, the Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology no. 09Si005, the Key Science Planning Program of Hainan under grant no. ZDXM20100062 and the National High Technology Research and Development Program of Hainan under grant no. 509013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingchang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Fu, C., Yang, X. et al. Study on the Performance of Zn,N/TiO2 Anode Film and Co-Sensitization in DSSC. J Inorg Organomet Polym 21, 43–49 (2011). https://doi.org/10.1007/s10904-010-9416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-010-9416-z

Keywords

Navigation