Skip to main content

Advertisement

Log in

Kantorovich’s theorem on Newton’s method under majorant condition in Riemannian manifolds

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Extension of concepts and techniques of linear spaces for the Riemannian setting has been frequently attempted. One reason for the extension of such techniques is the possibility to transform some Euclidean non-convex or quasi-convex problems into Riemannian convex problems. In this paper, a version of Kantorovich’s theorem on Newton’s method for finding a singularity of differentiable vector fields defined on a complete Riemannian manifold is presented. In the presented analysis, the classical Lipschitz condition is relaxed using a general majorant function, which enables us to not only establish the existence and uniqueness of the solution but also unify earlier results related to Newton’s method. Moreover, a ball is prescribed around the points satisfying Kantorovich’s assumptions and convergence of the method is ensured for any starting point within this ball. In addition, some bounds for the Q-quadratic convergence of the method, which depends on the majorant function, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.-A., Amodei, L., Meyer, G.: Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries. Comput. Stat. 29(3–4), 569–590 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, R.L., Dedieu, J.-P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8(2), 197–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amat, S., Busquier, S., Castro, R., Plaza, S.: Third-order methods on Riemannian manifolds under Kantorovich conditions. J. Comput. Appl. Math. 255, 106–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Argyros, I.K.: An improved unifying convergence analysis of Newton’s method in Riemannian manifolds. J. Appl. Math. Comput. 25(1–2), 345–351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Argyros, I.K., Hilout, S.: Newton’s method for approximating zeros of vector fields on Riemannian manifolds. J. Appl. Math. Comput. 29(1–2), 417–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Argyros, I.K., Magreñán, Á.A.: Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds. Appl. Math. Comput. 249, 453–467 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64(2), 289–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998). With a foreword by Richard M. Karp

  10. Da Cruz Neto, J.X., Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Convex-and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35(1), 53–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dedieu, J.-P., Priouret, P., Malajovich, G.: Newton’s method on Riemannian manifolds: convariant alpha theory. IMA J. Numer. Anal. 23(3), 395–419 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dedieu, J.-P., Shub, M.: Multihomogeneous Newton methods. Math. Comp. 69(231), 1071–1098 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  13. do Carmo, M.P.: Riemannian geometry. Mathematics: Theory & Applications (Translated from the second Portuguese edition by Francis Flaherty). Birkhäuser Boston, Inc., Boston (1992)

  14. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferreira, O.P., Gonçalves, M.L.N., Oliveira, P.R.: Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition. SIAM J. Optim. 23(3), 1757–1783 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferreira, O.P., Silva, R.C.M.: Local convergence of Newton’s method under a majorant condition in Riemannian manifolds. IMA J. Numer. Anal. 32(4), 1696–1713 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complexity 18(1), 304–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s majorants principle for Newton’s method. Comput. Optim. Appl. 42(2), 213–229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferreira, O.P., Svaiter, B.F.: A robust Kantorovich’s theorem on the inexact Newton method with relative residual error tolerance. J. Complex. 28(3), 346–363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37(2), 177–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms: Fundamentals. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305. Springer, Berlin (1993)

    MATH  Google Scholar 

  23. Karmarkar, N.: Riemannian geometry underlying interior-point methods for linear programming. In: Lagaries, J.C., Todd, M.J. (eds.) Contemporary Mathematics. Mathematical developments arising from linear programming, vol. 114, pp. 51–75. American Mathematical Society, Providence (1990)

  24. Krantz, S.G., Parks, H.R.: The Implicit Function Theorem: History, Theory, and Applications. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, Reprint of the 2003 edition (2013)

  25. Lang, S.: Differential and Riemannian Manifolds vol. 160 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (1995)

    Book  Google Scholar 

  26. Li, C., Wang, J.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the \(\gamma \)-condition. IMA J. Numer. Anal. 26(2), 228–251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C., Wang, J.: Newton’s method for sections on Riemannian manifolds: generalized covariant \(\alpha \)-theory. J. Complexity 24(3), 423–451 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, C., Wang, J.-H., Dedieu, J.-P.: Smale’s point estimate theory for Newton’s method on Lie groups. J. Complex. 25(2), 128–151 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Manton, J.H.: A framework for generalising the Newton method and other iterative methods from Euclidean space to manifolds. Numer. Math. 129(1), 91–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller, S.A., Malick, J.: Newton methods for nonsmooth convex minimization: connections among U-Lagrangian, Riemannian Newton and SQP methods. Math. Program. 104((2–3, Ser. B)), 609–633 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moser, J.: A new technique for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. Sci. USA. 47, 1824–1831 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 2(63), 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nesterov, Y., Nemirovskii, A.: Interior-point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

    Book  MATH  Google Scholar 

  34. Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2(4), 333–361 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Owren, B., Welfert, B.: The Newton iteration on Lie groups. BIT 40(1), 121–145 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rapcsák, T.: Smooth Nonlinear Optimization in \({ R}^n\). Nonconvex Optimization and its Applications, vol. 19. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  37. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schulz, V.H.: A Riemannian view on shape optimization. Found. Comput. Math. 14(3), 483–501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shub, M.: Some remarks on dynamical systems and numerical analysis. In: Lava-Carrero, L., Lewowicz J. (eds.) Dynamical Systems and Partial Differential Equations, pp. 69–91. Universidad Simon Bolivar, Caracas (1986)

  40. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E., Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, pp. 185–196. Springer, New York (1986)

  41. Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Bloch, A. (ed.) Fields Institute Communications. Hamiltonian and Gradient Flows, Algorithms and Control, vol. 3, pp. 113–136. American Mathematical Society, Providence (1994)

  42. Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and its Applications, vol. 297. Kluwer Academic Publishers Group, Dordrecht (1994)

    Book  MATH  Google Scholar 

  43. Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, J.-H., Huang, S., Li, C.: Extended Newton’s method for mappings on Riemannian manifolds with values in a cone. Taiwan. J. Math. 13(2B), 633–656 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Wang, J.-H., Yao, J.-C., Li, C.: Gauss-Newton method for convex composite optimizations on Riemannian manifolds. J. Global Optim. 53(1), 5–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wayne, C.E.: An introduction to KAM theory. In: Wayne,C.E., Levermore C.D. (eds.) Lectures in Applied Mathematics. Dynamical Systems and Probabilistic Methods in Partial Differential Equations, vol. 31, pp. 3–29. American Mathematical Society, Providence (1996)

  47. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142(1–2, Ser. A), 397–434 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zabrejko, P.P., Nguen, D.F.: The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optim. 9(5–6), 671–684 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, L.-H.: Riemannian Newton method for the multivariate eigenvalue problem. SIAM J. Matrix Anal. Appl. 31(5), 2972–2996 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Funding was provided by Fundação de Apoio a Pesquisa do Estado de Goiás (Grant No. 201210267000909-05/2012), CNPq (Grant No 305158/2014-7), CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Ferreira.

Additional information

This work was supported by PRONEX-Optimization (FAPERJ/CNPq), CNPq 305158/2014-7, FAPEG, CAPES.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittencourt, T., Ferreira, O.P. Kantorovich’s theorem on Newton’s method under majorant condition in Riemannian manifolds. J Glob Optim 68, 387–411 (2017). https://doi.org/10.1007/s10898-016-0472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0472-y

Keywords

Navigation