Skip to main content
Log in

Strong convergence theorems for approximating common fixed points of families of nonexpansive mappings and applications

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

An implicit algorithm for finding common fixed points of an uncountable family of nonexpansive mappings is proposed. A new inexact iteration method is also proposed for countable family of nonexpansive mappings. Several strong convergence theorems based on our main results are established in the setting of Banach spaces. Both algorithms are applied for finding zeros of accretive operators and for solving convex minimization, split feasibility and equilibrium problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleyner A., Reich S.: An explicit construction of sunny nonexpansive retractions in Banach spaces. Fixed Point Theory Appl. 3, 295–305 (2005)

    Google Scholar 

  2. Allen G.: Variational inequalities, complementarity problems and duality theorems. J. Math. Anal. Appl. 58, 1–10 (1977)

    Article  Google Scholar 

  3. Aoyama K., Kimura Y., Takahashi W., Toyoda M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  Google Scholar 

  4. Aubin J.P., Cellina A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984)

    Book  Google Scholar 

  5. Barbu V., Precopanu Th.: Convexity and Optimization in Banach spaces. Editura Academei R.S.R, Bucharest (1978)

    Google Scholar 

  6. Benavides T.D., Acedo G.L., Xu H.K.: Construction of sunny nonexpansive retractions in Banach spaces. Bull. Aust. Math. Soc. 66, 9–16 (2002)

    Article  Google Scholar 

  7. Benavides T.D., Acedo G.L., Xu H.K.: Iterative solutions for zeros of accretive operators. Math. Nachr. 248(249), 62–71 (2003)

    Article  Google Scholar 

  8. Bianchi M., Schaible S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31–43 (1996)

    Article  Google Scholar 

  9. Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    Google Scholar 

  10. Brezis H., Nirenberg L., Stampacchia G.A.: Remark on Ky Fans minimax principle. Boll. Unione Mat. Ital. 6, 293–300 (1972)

    Google Scholar 

  11. Browder F.E.: Nonlinear mappings of nonexpansive and accetive type in Banach spaces. Bull. Am. Math. Soc. 73, 875–882 (1967)

    Article  Google Scholar 

  12. Bruck R.E. Jr: Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 179, 251–262 (1973)

    Article  Google Scholar 

  13. Bruck R.E. Jr: A strongly convergent iterative solution of \({0\in Ux}\) for a maximal monotone operator U in Hilbert spaces. J. Math. Anal. Appl. 48, 114–126 (1974)

    Article  Google Scholar 

  14. Byrne C.: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  Google Scholar 

  15. Byrne C.L.: A unified treatment of some iterative algorithms insignal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  Google Scholar 

  16. Censor Y., Elfving T.: A multiprojection algorithm using Bregman projections in a product space Numer. Algorithms 8, 221–239 (1994)

    Article  Google Scholar 

  17. Censor Y., Bortfeld T., Martin B., Tromo A.: A unified approach for inversion problems in intensitymodulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  18. Censor Y., Elfving T., Kopf N., Bortfeld T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)

    Article  Google Scholar 

  19. Censor Y., Motova A., Segal A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327, 1244–1256 (2007)

    Article  Google Scholar 

  20. Censor Y., Segal A.: Iterative projection methods in biomedical inverse problems. In: Censor, Y., Jiang, M., Louis, A.K. (eds) Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), pp. 65–96. Edizioni della Normale, Pisa (2008)

    Google Scholar 

  21. Chidume C.E., Zegeye H.: Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps. Proc. Am. Math. Soc. 132, 831–840 (2003)

    Article  Google Scholar 

  22. Colao V., Lopez Acedo G., Marino G.: An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings. Nonlinear Anal. 71, 2708–2715 (2010)

    Article  Google Scholar 

  23. Colao V., Leustean L., Lopez G., Martin-Marquez V.: Alternative iterative methods for nonexpansive mappings, rates of convergence and applications. J. Convex Anal. 18(2), 465–487 (2011)

    Google Scholar 

  24. Combettes P.L., Hirstoaga S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6(1), 117–136 (2005)

    Google Scholar 

  25. Ecksteind J., Bertsekas D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  Google Scholar 

  26. Eckstein J.: Approximate iterations in Bregman-function-based proximal algorithms. Math. Program. 83, 113–123 (1998)

    Google Scholar 

  27. Edelstein M., OBrien R.C.: Nonexpansive mappings, asymptotic regularity and successive approximations. J. Lond. Math. Soc. 3, 547–554 (1978)

    Article  Google Scholar 

  28. Fan K.: A minimax inequality and applications. In: Shisha, O. (eds) Inequality, vol. III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  29. Goebel K., Reich S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker Inc., New York (1984)

    Google Scholar 

  30. Gol’shtein E.G., Tret’yakov N.V.: The gradient method of minimization and -algorithms of convex programming based on Lagrangian functions. Ekonomika i Matematcheskie Metody 11(4), 730–742 (1975)

    Google Scholar 

  31. Güler O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  Google Scholar 

  32. Ha K.S., Jung J.S.: Strong convergence theorems for accretive operators in Banach space. J. Math. Anal. Appl. 147, 330–339 (1990)

    Article  Google Scholar 

  33. Halpern B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  Google Scholar 

  34. Iusem A.N., Sosa W.: Iterative algorithms for equilibrium problems. Optimization 52(3), 301–316 (2003)

    Article  Google Scholar 

  35. Kamimura S., Takahashi W.: Approximating solutions of maximal monotone operators in Hilbert space. J. Approx. Theory 106, 226–240 (2000)

    Article  Google Scholar 

  36. Kato T.: Nonlinear semi-groups and evolution equations. J. Math. Soc. Jpn. 19, 508–520 (1967)

    Article  Google Scholar 

  37. Lim T.-C.: A fixed point theorem for families of nonexpansive mappings. Pac. J. Math 53, 487–493 (1974)

    Article  Google Scholar 

  38. Leuştean, L.: Rates of asymptotic regularity for Halpern iterations of nonexpansive mappings. In: Calude, C.S., Stefanescu, G., Zimand, M. (eds.) Combinatorics and Related Areas. A Collection of Papers in Honor of the 65th Birthday of Ioan Tomescu, J. Univers. Comput. Sci. 13, 1680–1691 (2007)

  39. Mainge P.E.: Viscosity methods for zeroes of accretive operators. J. Approx. Theory 140, 127–140 (2006)

    Article  Google Scholar 

  40. Marino G., Colao V., Muglia L., Yao Y.: Krasnoselski-Man iteration for- hierarchical ficed points and equilibrium problem. Bull. Aust. Math. Soc. 79, 187–200 (2009)

    Article  Google Scholar 

  41. Marino G., Xu H.K.: Convergence of generalized proximal point algorithm. Comm. Pure Appl. Anal. 3, 791–808 (2004)

    Article  Google Scholar 

  42. Martinet B.: Regularisation dinequations variationnelles par approximations successives. Rev. Francaise Inform. Recherche Operationnelle 4, 154–158 (1970)

    Google Scholar 

  43. Minty G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  Google Scholar 

  44. Moore C., Nnoli B.V.C.: Iterative solution of nonlinear equations involving set-valued uniformly accretive operators. Comput. Math. Appl. 42, 131–140 (2001)

    Article  Google Scholar 

  45. Nakajo K.: Strong convergence to zeros of accretive operators in Banach spaces. J. Nonlinear Convex Anal. 7, 71–81 (2006)

    Google Scholar 

  46. Oettli W.: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 213–221 (1997)

    Google Scholar 

  47. Podilchuk C.I., Mammone R.J.: Image recovery by convex projections using a leastsquares constraint. J. Opt. Soc. Am. A 7, 517–521 (1990)

    Article  Google Scholar 

  48. Rockafellar R.T.: Characterization of the subdifferentials of convex functions. Pac. J. Math. 17, 497–510 (1966)

    Article  Google Scholar 

  49. Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  Google Scholar 

  50. Reich, S.: Constructive techniques for accretive and monotone operators. In: Applied Nonlinear Analysis (Proceedings of the third international conference, University of Texas, Arlington, Texas). Academic Press, New York, pp. 335–345 (1979)

  51. Sahu, D.R., Wong, N.C., Yao, J.C.: A generalized hybrid steepest-descent method for variational inequalities in Banach spaces. Fixed Point Theory Appl. 1–28. doi:10.1155/2011/754702 (2011)

  52. Sahu D.R.: Applications of the S-iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory 12(1), 187–204 (2011)

    Google Scholar 

  53. Sahu D.R., Yao J.C.: The prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces. J. Glob. Optim. 51(4), 641–655 (2011)

    Article  Google Scholar 

  54. Takahashi W., Ueda Y.: On Reich’s strong convergence theorems for resolvents of accretive operators. J. Math. Anal. Appl. 104, 546–553 (1984)

    Article  Google Scholar 

  55. Takahashi W.: Nonlinear Functional Analysis, Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    Google Scholar 

  56. Wong N.C., Sahu D.R., Yao J.C.: Solving variational inequalities involving nonexpansive type mappings. Nonlinear Anal. 69, 4732–4753 (2008)

    Article  Google Scholar 

  57. Xu H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  Google Scholar 

  58. Xu H.K.: A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)

    Article  Google Scholar 

  59. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26 (2010). doi:l10.1088/0266-5611/26/10/105018

  60. Youla D.: Mathematical theory of image restoration by the method of convex projections. In: Stark, H. (eds) Image Recovery Theory and Applications, pp. 29–77. Academic Press, Orlando (1987)

    Google Scholar 

  61. Youla D.: On deterministic convergence of iterations of relaxed projection operators. J. Vis. Comm. Image Represent. 1, 12–20 (1990)

    Article  Google Scholar 

  62. Zeidler E.: Nonlinear Functional Analysis and Its Applications, Part II: Monotone Operators. Springer, Berlin (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Marino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, D.R., Colao, V. & Marino, G. Strong convergence theorems for approximating common fixed points of families of nonexpansive mappings and applications. J Glob Optim 56, 1631–1651 (2013). https://doi.org/10.1007/s10898-012-9929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9929-9

Keywords

Navigation