Skip to main content
Log in

Local boundedness of monotone bifunctions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider bifunctions \({F : C\times C\rightarrow \mathbb{R}}\) where C is an arbitrary subset of a Banach space. We show that under weak assumptions, monotone bifunctions are locally bounded in the interior of their domain. As an immediate corollary, we obtain the corresponding property for monotone operators. Also, we show that in contrast to maximal monotone operators, monotone bifunctions (maximal or not maximal) can also be locally bounded at the boundary of their domain; in fact, this is always the case whenever C is a locally polyhedral subset of \({\mathbb{R}^{n}}\) and F(x, ·) is quasiconvex and lower semicontinuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allevi E., Gnudi A., Schaible S., Vespucci M.T.: Equilibrium and least element problems for multivalued functions. J. Glob. Optim. 46, 561–569 (2010)

    Article  Google Scholar 

  2. Ait Mansour M., Chbani Z., Riahi H.: Recession bifunction and solvability of noncoercive equilibrium problems. Commun. Appl. Anal. 7, 369–377 (2003)

    Google Scholar 

  3. Aoyama K., Kimura Y., Takahashi W.: Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 15, 395–409 (2008)

    Google Scholar 

  4. Bianchi M., Pini R.: A note on equilibrium problems with properly quasimonotone bifunctions. J. Glob. Optim. 20, 67–76 (2001)

    Article  Google Scholar 

  5. Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    Google Scholar 

  6. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop and Miniconference on Functional Analysis and Optimization (Canberra, 1988), pp. 59–65. Australian National University, Canberra (1988)

  7. Flores-Bazan F.: Existence theorems for generalized noncoercive equilibrium problems: the quasiconvex case. SIAM J. Optim. 11, 675–690 (2000)

    Article  Google Scholar 

  8. Hadjisavvas N., Khatibzadeh H.: Maximal monotonicity of bifunctions. Optimization 59, 147–160 (2010)

    Article  Google Scholar 

  9. Iusem A., Kassay G., Sosa W.: An existence result for equilibrium problems with some surjectivity consequences. J. Convex Anal. 16, 807–826 (2009)

    Google Scholar 

  10. Kassay G.: On equilibrium problems. In: Chinchuluun, A., Pardalos, P.M., Enkhbat, R., Tseveendorj, I. (eds) Optimization and Optimal Control: Theory and Applications, pp. 55–83. Springer, New York, Dordrecht, Heidelberg, London (2010)

    Chapter  Google Scholar 

  11. Konnov I.V.: Regularization method for nonmonotone equilibrium problems. J. Nonlinear Convex Anal. 10, 93–101 (2009)

    Google Scholar 

  12. Konnov, I.V., Dyabilkin, D.A.: Nonmonotone equilibrium problems: coercivity conditions and weak regularization. J. Glob. Optim. doi:10.1007/s10898-010-9551-7

  13. Krauss E.: A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions. Nonlinear Anal. Theory Methods Appl. 9, 1381–1399 (1985)

    Article  Google Scholar 

  14. Moudafi, A., Thera, M.: Proximal and dynamical approaches to equilibrium problem. In: Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 187–201. Springer, New York (1999)

  15. Rockafellar R.T.: Local boundedness of nonlinear monotone operators. Mich. Math. J. 16, 397–407 (1969)

    Article  Google Scholar 

  16. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Hadjisavvas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alizadeh, M.H., Hadjisavvas, N. Local boundedness of monotone bifunctions. J Glob Optim 53, 231–241 (2012). https://doi.org/10.1007/s10898-011-9677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9677-2

Keywords

Navigation