Skip to main content
Log in

Low Order-Value Optimization and applications

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Given r real functions F 1(x),...,F r (x) and an integer p between 1 and r, the Low Order-Value Optimization problem (LOVO) consists of minimizing the sum of the functions that take the p smaller values. If (y 1,...,y r ) is a vector of data and T(x, t i ) is the predicted value of the observation i with the parameters \(x \in I\!\!R^n\) , it is natural to define F i (x) =  (T(x, t i ) − y i )2 (the quadratic error in observation i under the parameters x). When pr this LOVO problem coincides with the classical nonlinear least-squares problem. However, the interesting situation is when p is smaller than r. In that case, the solution of LOVO allows one to discard the influence of an estimated number of outliers. Thus, the LOVO problem is an interesting tool for robust estimation of parameters of nonlinear models. When pr the LOVO problem may be used to find hidden structures in data sets. One of the most successful applications includes the Protein Alignment problem. Fully documented algorithms for this application are available at www.ime.unicamp.br/~martinez/lovoalign. In this paper optimality conditions are discussed, algorithms for solving the LOVO problem are introduced and convergence theorems are proved. Finally, numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreani R., Dunder C. and Martínez J.M. (2003). Order-Value Optimization: formulation and solution by means of a primal Cauchy method. Math. Methods Operat. Res. 58: 387–399

    Article  Google Scholar 

  • Andreani R., Dunder C. and Martínez J.M. (2005). Nonlinear-Programming Reformulation of the Order-Value Optimization Problem. Math. Methods Operat. Res. 61: 365–384

    Article  Google Scholar 

  • Andreani, R., Martínez, J.M., Martínez, L., Yano, F.: Low Order-Value Optimization and Applications. Technical report MCDO 051013, Department of Applied Mathematics, State University of Campinas, Brazil, 2005

  • Andreani R., Martínez J.M. and Schuverdt M.L. (2005). On the relation between the Constant Positive Linear Dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125: 473–485

    Article  Google Scholar 

  • Andreani, R., Martínez, J.M., Salvatierra, M., Yano, F.: Global Order-Value Optimization by means of a multistart harmonic oscillator tunneling strategy. In: Liberti, L., Maculan, N. (eds.) Global Optimization: Theory and Practice, pp. 379–404. Kluwer (2006)

  • Andreani R., Martínez J.M., Salvatierra M. and Yano F. (2006). Quasi-Newton methods for order-value optimization and value-at-risk calculations. Pac. J. Optim. 2: 11–33

    Google Scholar 

  • Andreani R., Birgin E.G., Martínez J.M. and Schuverdt M.L. (2007). On Augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18: 1286–1309

    Article  Google Scholar 

  • Andreani R., Birgin E.G., Martínez J.M. and Schuverdt M.L. (2008). Augmented Lagrangian methods under the Constant Positive Linear Dependence constraint qualification. Math. Program. 112: 5–32

    Google Scholar 

  • Andreani R., Martínez J.M., Martínez L. and Yano F. (2008). Continuous optimization methods for structural alignment. Math. Program. 112: 93–124

    Article  Google Scholar 

  • Audet Ch. and Dennis J.E. (2006). Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17: 188–217

    Article  Google Scholar 

  • Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N. and Bourne P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28: 235–242

    Article  Google Scholar 

  • Bertsekas D.P. (1999). Nonlinear Programming. Athena Scientific, Belmont

    Google Scholar 

  • Birgin E.G. and Martínez J.M. (2002). Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23: 101–125

    Article  Google Scholar 

  • Birgin, E.G., Floudas, C.A., Martínez, J.M.: Global minimization using an Augmented Lagrangian method with variable lower-level constraints. Available in Optimization On-line, E-Print ID: 2006-12-1544, http://www.optimization-online.org/DB_HTML/2006/12/1544.html

  • Burke J.V., Lewis A.S. and Overton M.L. (2005). A robust gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 15: 751–779

    Article  Google Scholar 

  • Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, SIAM, Philadelphia (1990)

  • Holm L. and Sander C. (1996). Mapping the Protein Universe. Science 273: 595–602

    Article  Google Scholar 

  • Huber P.J. (1981). Robust Statistics. Wiley, New York

    Google Scholar 

  • Jorion P. (2001). Value at Risk: The New Benchmark for Managing Financial Risk. Mc Graw-Hill, New York

    Google Scholar 

  • Kabsch W. (1978). A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 34: 827–828

    Article  Google Scholar 

  • Kearsley S.K. (1996). On the orthogonal transformation used for structural comparisons. Acta Crystallogr. A 45: 208–210

    Article  Google Scholar 

  • Kolodny R. and Linial N. (2004). Approximate protein structural alignment in polynomial time. Proc. Natl. Acad. Sci. USA 101: 12201–12206

    Article  Google Scholar 

  • Kolodny R., Koehl P. and Levitt M. (2005). Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures. J. Mol. Biol. 346: 1173–1188

    Article  Google Scholar 

  • Mangasarian O.L. and Fromovitz S. (1967). The Fritz-John necessary optimality conditions in presence of equality and inequality constraints. J. Math. Anal. Appl. 17: 37–47

    Article  Google Scholar 

  • Martínez, J.M.: Order-Value Optimization and New Applications. Plenary Talk and the International Congress of Industrial and Applied Mathematics ICIAM 2007, Zurich (2007).

  • Martínez L., Andreani R. and Martínez J.M. (2007). Convergent algorithms for Protein Structural Alignment. BMC Bioinform. 8: 306

    Article  Google Scholar 

  • Moré J.J., Garbow B.S. and Hillstrom K.E. (1981). Testing unconstrained optimization software. ACM Trans. Math. Software 7: 17–41

    Article  Google Scholar 

  • Pham Dinh T. and Le Thi H.A. (1997). Convex analysis approach to DC programming: theory, algorithm and applications. Acta Math. Vietnam. 22: 289–355

    Google Scholar 

  • Pham Dinh T. and Le Thi H.A. (1998). DC Optimization Algorithms for solving the trust-region problem. SIAM J. Optim. 8: 476–505

    Article  Google Scholar 

  • Qi L. and Wei Z. (2000). On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10: 963–981

    Article  Google Scholar 

  • Rockafellar R.T. (1993). Lagrange multipliers and optimality. SIAM Rev. 35: 183–238

    Article  Google Scholar 

  • Rockafellar R.T. and Uryasev S. (2002). Conditional value-at-risk for general loss distributions. J. Bank. Finance 26: 1443–1471

    Article  Google Scholar 

  • Subbiah S., Laurents D.V. and Levitt M. (1993). Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core. Curr. Biol. 3: 141–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreani, R., Martínez, J.M., Martínez, L. et al. Low Order-Value Optimization and applications. J Glob Optim 43, 1–22 (2009). https://doi.org/10.1007/s10898-008-9280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9280-3

Keywords

Navigation