Skip to main content
Log in

Investigation of Triangle Terthiophene and Hydroxyphenylbenzothiazole Configured Fluorescent Dye with a Triple Bond Bridge

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A photochromic dye was constructed by incorporation of a carbon–carbon triple bond spaced triangle terthiophene skeleton and hydroxyphenylbenzothiazole. Regular photochromic behavior was investigated with alternated UV (254 nm) and visible light (≥ 400 nm) irradiation. The color of dye in solution can be cycled between pink and colorless. Additionally, the dye solution strongly fluoresces in THF with the absolute quantum yield (QY) being 0.56. When irradiation with 254 nm light, the emissive solution can be effectively quenched to photo-stationary sate (Φ = 0.05). An emission “on–off” cycle could be established based on the UV/visible light irradiation cycle. The photochromic dye also exhibits good photo- and thermal-stability at room temperature. The emission decay profile indicates typical single component character with the fluorescence lifetime being 6.68 ns. The emission color was determined by the CIE 1931 coordinates of x = 0.14, y = 0.25 in the blue region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

All data generated or analysed during this study are included in this published article.

References

  1. Baroncini M, Silvi S, Credi A (2020) Photo- and redox-driven artificial molecular motors. Chem Rev 120:200–268. https://doi.org/10.1021/acs.chemrev.9b00291

    Article  CAS  Google Scholar 

  2. Chatir E, Khettabi A, Lafolet F, Jouvenot D, Royal G, Saint-Aman E, Cobo S (2022) Photochromic metallopolymer based on dithienylethene as a molecular calculator. Chem Mater 34:5912–5918. https://doi.org/10.1021/acs.chemmater.2c00819

    Article  CAS  Google Scholar 

  3. Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Guiseppone N (2020) Design of collective motions from synthetic molecular switches, rotors, and motors. Chem Rev 120:310–433. https://doi.org/10.1021/acs.chemrev.9b00288

    Article  CAS  Google Scholar 

  4. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277. https://doi.org/10.1021/cr500249p

    Article  CAS  Google Scholar 

  5. McFadden ME, Robb MJ (2019) Force-dependent multicolor mechanochromism from a single mechanophore. J Am Chem Soc 141:11388–11392. https://doi.org/10.1021/jacs.9b05280

    Article  CAS  Google Scholar 

  6. Mutoh K, Abe J (2022) Stepwise photochromism of bis(imidazole dimer) bridged by a sulfur atom. Org Lett 24: 5166–5170. https://doi.org/10.1021/acs.orglett.2c01998

  7. Li X, Ma Y, Wang B, Li G (2008) “Lock and key control” of photochromic reactivity by controlling the oxidation/reduction state. Org Lett 10:3639–3642. https://doi.org/10.1021/ol8013655

    Article  CAS  Google Scholar 

  8. Mutoh K, Toshimitsu S, Kobayashi Y, Abe J (2021) Dynamic spin–spin interaction observed as interconversion of chemical bonds in stepwise two-photon induced photochromic reaction. J Am Chem Soc 143:13917–13928. https://doi.org/10.1021/jacs.1c06775

    Article  CAS  Google Scholar 

  9. Ostroverkhova O (2016) Organic optoelectronic materials: mechanisms and applications. Chem Rev 116:13279–13412. https://doi.org/10.1021/acs.chemrev.6b00127

    Article  CAS  Google Scholar 

  10. Xi H, Zhang Z, Zhang W, Li M, Lian C, Luo Q, Tian H, Zhu WH (2019) All-visible-light-activated dithienylethenes induced by intramolecular proton transfer. J Am Chem Soc 141:18467–18474. https://doi.org/10.1021/jacs.9b07357

    Article  CAS  Google Scholar 

  11. Thumser S, Köttner L, Hoffmann N, Mayer P, Dube H (2021) All-red-light photoswitching of indirubin controlled by supramolecular interactions. J Am Chem Soc 143:18251–18260. https://doi.org/10.1021/jacs.1c08206

    Article  CAS  Google Scholar 

  12. Villabona M, Widebrauk S, Feist F, Guirado G, Hernando J, Barner-Kowollik C (2021) Dual-wavelength gated oxo-diels–alder photoligation. Org Lett 23:2405–2410. https://doi.org/10.1021/acs.orglett.1c00015

    Article  CAS  Google Scholar 

  13. Zhang H, Qi Y, Zhao X, Li M, Wang R, Cheng H, Li Z, Guo H, Li Z (2022) Dithienylethene-bridged fluoroquinolone derivatives for imaging-guided reversible control of antibacterial activity. J Org Chem 87:7446–7455. https://doi.org/10.1021/acs.joc.2c00797

    Article  CAS  Google Scholar 

  14. Tang YY, Zen YL, Xiong RG (2022) Contactless manipulation of write–read–erase data storage in diarylethene ferroelectric crystals. J Am Chem Soc 144:8633–8640. https://doi.org/10.1021/jacs.2c01069

    Article  CAS  Google Scholar 

  15. König N, Mutruc D, Hecht S (2021) Accelerated discovery of α-cyanodiarylethene photoswitches. J Am Chem Soc 143:9162–9168. https://doi.org/10.1021/jacs.1c03631

    Article  CAS  Google Scholar 

  16. Hamatani S, Kitagawa D, Kobatake S (2021) Fast T-type photochromic crystals of diarylbenzene. J Phys Chem C 125:4588–4594. https://doi.org/10.1021/acs.jpcc.0c10988

    Article  CAS  Google Scholar 

  17. Roberts CA, Allen S, Helmy S (2021) Using donor–acceptor stenhouse adducts to teach photochromism in the undergraduate laboratory. J Chem Educ 98:1736–1740. https://doi.org/10.1021/acs.jchemed.0c01434

    Article  CAS  Google Scholar 

  18. Lin WC, Yang DY (2013) Photochromism of o-nitrophenyl-substituted oxazabicycles. J Org Chem 78:11798–11806. https://doi.org/10.1021/jo401838n

    Article  CAS  Google Scholar 

  19. Li X, Cai Q, Zhang J, Kim H, Son YA (2020) An “electron lock” toward the photochromic activity of phenylacetylene appended bisthienylethene. Mol Cryst Liq Cryst 706:141–149. https://doi.org/10.1080/15421406.2020.1743450

    Article  CAS  Google Scholar 

  20. Saeki Y, Kayanuma M, Nitta A, Shigeta Y, Kawamura I, Nakagawa T, Ubukata T, Yokoyama Y (2021) On-demand chirality transfer of human serum albumin to bis(thiophen-2-yl)hexafluorocyclopentenes through their photochromic ring closure. J Org Chem 86:12549–12558. https://doi.org/10.1021/acs.joc.1c00849

    Article  CAS  Google Scholar 

  21. Kajiya R, Sakakibara S, Ikawa H, Higashiguchi K, Matsuda K, Wada H, Kuroda K, Shimojima A (2019) Inorganic-organic hybrid photomechanical crystals consisting of diarylethenes and cage siloxanes. Chem Mater 31:9372–9378. https://doi.org/10.1021/acs.chemmater.9b02941

    Article  CAS  Google Scholar 

  22. Mutoh K, Niyashita N, Arai K, Abe J (2019) Turn-on mode fluorescence switch by using negative photochromic imidazole dimer. J Am Chem Soc 141:5650–5654. https://doi.org/10.1021/jacs.9b01870

    Article  CAS  Google Scholar 

  23. Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M (2011) Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. J Am Chem Soc 133:4984–4990. https://doi.org/10.1021/ja110686t

    Article  CAS  Google Scholar 

  24. Kim MS, Maruyama H, Kawai T, Irie M (2003) Refractive index changes of amorphous diarylethenes containing 2,4-diphenylphenyl substituents. Chem Mater 15:4539–4543. https://doi.org/10.1021/cm030304v

    Article  CAS  Google Scholar 

  25. Matsuda K, Irie M (2000) A diarylethene with two nitronyl nitroxides: photoswitching of intramolecular magnetic interaction. J Am Chem Soc 122:7195–7201. https://doi.org/10.1021/ja000605v

    Article  CAS  Google Scholar 

  26. Matsuda K, Irie M (2000) Photoswitching of intramolecular magnetic interaction using a photochromic spin coupler: an ESR study. J Am Chem Soc 122:8309–8310. https://doi.org/10.1021/ja001767u

    Article  CAS  Google Scholar 

  27. Qiu S, Cui S, Shi F, Pu S (2019) Novel diarylethene-based fluorescent switching for the detection of Al3+ and construction of logic circuit. ACS Omega 4:14841–14848. https://doi.org/10.1021/acsomega.9b01432

    Article  CAS  Google Scholar 

  28. Szacilowski K (2008) Digital information processing in molecular systems. Chem Rev 108:3481–3548. https://doi.org/10.1021/cr068403q

    Article  CAS  Google Scholar 

  29. Sumi T, Kaburagi T, Morimoto M, Une K, Sotome H, Ito S, Miyasaka H, Irie M (2015) Fluorescent photochromic diarylethene that turns on with visible light. Org Lett 17:4802–4805

    Article  CAS  Google Scholar 

  30. Higashiguchi K, Matsuda K, Tanifuji N, Irie M (2005) Full-color photochromism of a fused dithienylethene trimer. J Am Chem Soc 127:8922–8923. https://doi.org/10.1021/ja051467i

    Article  CAS  Google Scholar 

  31. Li X, Ji G, Son YA (2016) Tunable emission of hydrazine-containing bipyrrole fluorine-boron complexes by linear extension. Dye Pigm 124:232–240. https://doi.org/10.1016/j.dyepig.2015.09.022

    Article  CAS  Google Scholar 

  32. Li X, Son YA (2014) Efficient luminescence from easily prepared fluorine-boron core complexes based on benzothiazole and benzoxazole. Dye Pigm 107:182–187. https://doi.org/10.1016/j.dyepig.2014.04.001

    Article  CAS  Google Scholar 

  33. Li X, Han Y, Kim MJ, Son YA (2018) Reversed photochromism reactivity of malononitrile attached bisthienylthene. Mol Cryst Liq Cryst 662:147–156. https://doi.org/10.1080/15421406.2018.1466534

    Article  CAS  Google Scholar 

  34. More M, Devkule SS, Chavan SS (2017) Ni(II) and Zn(II) Complexes containing alkynyl functionalized salicylaldimine ligand and heterocyclic coligand: synthesis, characterization and luminescence properties. J Fluores 27:841–851. https://doi.org/10.1007/s10895-016-2020-z

    Article  CAS  Google Scholar 

  35. Xu L, Wang Q, Zhang Y (2017) Electronic effect on photophysical properties of 2-(2-hydroxyphenyl)benzothiazole-based excited state intramolecular proton transfer fluorophores synthesized by Sonogashira-coupling. Dyes Pigm 136:732–741. https://doi.org/10.1016/j.dyepig.2016.09.024

  36. Li X, Wang Y, Jia C, Kim H, Son YA (2019) Photochromic reactivity induced by electron distribution: active or inactive. Mol Cryst Liq Cryst 689:83–91. https://doi.org/10.1080/15421406.2019.1597556

    Article  CAS  Google Scholar 

  37. Li X, Han Y, Kim M, Son YA (2017) Photochromic behavior of 2,3-bis(2,5-dimethylthiophene-3-yl) thiophene-5-carbaldehyde oxime. Mol Cryst Liq Cryst 654:123–130. https://doi.org/10.1080/15421406.2017.1358015

    Article  CAS  Google Scholar 

  38. Li X, Tian H (2005) One-step synthesis and photochromic properties of a stable triangle terthiophene. Tetrahedron Lett 46:5409–5412. https://doi.org/10.1016/j.tetlet.2005.05.142

    Article  CAS  Google Scholar 

  39. Li W, Jiao C, Li X, Xie Y, Nakatani K, Tian H, Zhu W (2014) Separation of photoactive conformers based on hindered diarylethenes: efficient modulation in photocyclization quantum yields. Angew Chem Int Ed 53:4603–4607. https://doi.org/10.1002/anie.201310438

    Article  CAS  Google Scholar 

  40. Wu Y, Xie Y, Zhang Q, Tian H, Zhu W, Li ADQ (2014) Quantitative photoswitching in bis(dithiazole)ethene enables modulation of light for encoding optical signals. Angew Chem Int Ed 53:2090–2094. https://doi.org/10.1002/anie.201309915

    Article  CAS  Google Scholar 

  41. Kobatake S, Yamada T, Uchida K, Kato N, Irie M (1999) Photochromism of 1,2-bis(2,5-dimethyl-3-thienyl)perfluoro-cyclopentene in a single crystalline phase. J Am Chem Soc 121:2380–2386. https://doi.org/10.1021/ja983717j

    Article  CAS  Google Scholar 

  42. Yamada T, Kobatake S, Muto K, Irie M (2000) X-ray crystallographic study on single-crystalline photochromism of bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene. J Am Chem Soc 122:1589–1592. https://doi.org/10.1021/ja993289x

    Article  CAS  Google Scholar 

  43. Giordan L, Jovin TM, Irie M, Jares-Erijman E (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J Am Chem Soc 124:7481–7489. https://doi.org/10.1021/ja016969k

    Article  CAS  Google Scholar 

  44. Liu G, Pu S, Wang R (2013) Photochromism of asymmetrical diarylethenes with a pyrrole unit: effects of aromatic stabilization energies of aryl rings. Org Lett 15:980–983. https://doi.org/10.1021/ol400188h

    Article  CAS  Google Scholar 

  45. Tang KC, Chang MJ, Lin TY, Pan HA, Fang TC, Chen KY, Hung WY, Hsu YH, Chou PT (2011) Fine tuning the energetics of excited-state intramolecular proton transfer (ESIPT): white light generation in a single ESIPT system. J Am Chem Soc 133:17738–17745. https://doi.org/10.1021/ja2062693

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 21772034) We also thank the financial support from Henan Key Laboratory of Organic Functional Molecules and Drug Innovation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Guangqian Ji, Qiaozhi Hou and Junna Zhang. The first draft of the manuscript was written by Guangqian Ji and Xiaochuan Li. Junna Zhang prepared Figs. 1, 2, 3, 4 and 5 and Qiaozhi Hou prepared Schemes 1 and 2. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaochuan Li.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, G., Hou, Q., Zhang, J. et al. Investigation of Triangle Terthiophene and Hydroxyphenylbenzothiazole Configured Fluorescent Dye with a Triple Bond Bridge. J Fluoresc 33, 153–159 (2023). https://doi.org/10.1007/s10895-022-03049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03049-3

Keywords

Navigation