Skip to main content
Log in

An AIE-Active probe for detection and bioimaging of pH values based on lactone hydrolysis reaction

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Cellular pH homeostasis is essential for many physiological and pathological processes. pH monitoring is helpful for the diagnosis, treatment and prevention of disorders and diseases. Herein, we developed a ratiometric fluorescent pH probe (TCC) based on a coumarin derivative containing a highly active lactone ring. TCC exhibited a typical AIE effect and emitted blue fluorescence under weak acidic condition. When under weak basic condition, the active lactone moiety underwent a hydrolysis reaction to afford a water-soluble product, which gave red-shifted emission. The emission color change from blue through cyan and then to yellow within pH 6.5–9.0 which is approximate to the biological pH range. And the fluorescence color change along with pH value is reversible. Furthermore, TCC was successfully utilized in the detection of the intracellular pH change of live HeLa cells, which indicated that TCC had practical potential in biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

/ Data availability The crystallographic information files that have been deposited in the Cambridge Crystallographic Data Centre (CCDC 2,131,284) which are freely available for all. The link for CCDC: https://www.ccdc.cam.ac.uk/.

Code Availability

not applicable.

References

  1. Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–961. https://doi.org/10.1038/sj.cdd.4401466

    Article  CAS  PubMed  Google Scholar 

  2. Donoso P, Beltrán M, Hidalgo C (1996) Luminal pH regulates calcium release kinetics in sarcoplasmic reticulum vesicles. Biochemistry 35:13419–13425. https://doi.org/10.1021/bi9616209

    Article  CAS  PubMed  Google Scholar 

  3. Neuhoff S, Ungell AL, Zamora I, Artursson P (2003) pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. Pharm Res 20:1141–1148. https://doi.org/10.1023/A:1025032511040

    Article  CAS  PubMed  Google Scholar 

  4. Kullas AL, Martin SJ, Davis D (2007) Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol 66:858–871. https://doi.org/10.1111/j.1365-2958.2007.05929.x

    Article  CAS  PubMed  Google Scholar 

  5. Wen Y, Zhang W, Liu T, Huo F, Yin C (2017) Pinpoint diagnostic kit for heat stroke by monitoring lysosomal pH. Anal Chem 89:11869–11874. https://doi.org/10.1021/acs.analchem.7b03612

    Article  CAS  PubMed  Google Scholar 

  6. Davies TA, Fine RE, Johnson RJ, Levesque CA, Rathbun WH, Seetoo KF, Smith SJ, Strohmeier G, Volicer L, Delva L (1993) Non-age related differences in thrombin responses by platelets from male patients with advanced Alzheimer’s disease. Biochem Biophys Res Commun 194:537–543. https://doi.org/10.1006/bbrc.1993.1853

    Article  CAS  PubMed  Google Scholar 

  7. White KA, Grillo-Hill BK, Barber DL (2017) Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J Cell Sci 130:663–669. https://doi.org/10.1242/jcs.195297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chao J, Liu Y, Sun J, Fan L, Zhang Y, Tong H, Li Z (2015) A ratiometric pH probe for intracellular pH imaging. Sens Actuat B-Chem 221:427–433. https://doi.org/10.1016/j.snb.2015.06.087

    Article  CAS  Google Scholar 

  9. Chen S, Qiu R, Yu Q, zhang X, Wei M, Dai Z (2018) Boranil dyes bearing tetraphenylethene: synthesis, AIE/AIEE effect properties, pH sensitive properties and application in live cell imaging. Tetra Lett 59:2671–2678. https://doi.org/10.1016/j.tetlet.2018.05.081

    Article  CAS  Google Scholar 

  10. Lin B, Wei Y, Hao Y, Shuang E, Shu Y, Wang J (2021) β-Naphthothiazolium-based ratiometric fluorescent probe with ideal pKa for pH imaging in mitochondria of living cells. Talanta 232:122475. https://doi.org/10.1016/j.talanta.2021.122475

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Liu H, Wu M, Liu X, Sun H, Zheng A (2019) Water-soluble organic probe for pH sensing and imaging. Talanta 205:120095. https://doi.org/10.1016/j.talanta.2019.06.095

    Article  CAS  PubMed  Google Scholar 

  12. Qian J, Tang BZ (2017) AIE luminogens for bioimaging and theranostics: from organelles to animals. Chem 3:56–91. https://doi.org/10.1016/j.chempr.2017.05.010

    Article  CAS  Google Scholar 

  13. Mukherjee A, Saha PC, Das RS, Bera T, Guha S (2021) Acidic pH-activatable visible to near-infrared switchable ratiometric fluorescent probe for live-cell lysosome targeted imaging. ACS Sens 6:2141–2146. https://doi.org/10.1021/acssensors.1c00961

    Article  CAS  PubMed  Google Scholar 

  14. Zhang XF, Zhang T, Shen SL, Miao JY, Zhao BX (2015) A ratiometric lysosomal pH probe based on the naphthalimide–rhodamine system. J Mater Chem B 3:3260–3266. https://doi.org/10.1039/C4TB02082K

    Article  CAS  PubMed  Google Scholar 

  15. Jiao Y, Gong X, Han H, Gao Y, Lu W, Liu Y, Xian M, Shuang S, Dong C (2018) Facile synthesis of orange fluorescence carbon dots with excitation independent emission for pH sensing and cellular imaging. Anal Chim Acta 1042:125–132. https://doi.org/10.1016/j.aca.2018.08.044

    Article  CAS  PubMed  Google Scholar 

  16. Yao S, Schafer-Hales KJ, Belfield KD (2007) A new water-soluble near-neutral ratiometric fluorescent pH indicator. Org Lett 9:5645–5648. https://doi.org/10.1021/ol7026366

    Article  CAS  PubMed  Google Scholar 

  17. Yang SL, Liu WS, Li G, Bu R, Li P, Gao EQ (2020) A pH-sensing fluorescent metal-organic framework: pH-triggered fluorescence transition and detection of mycotoxin. Inorg Chem 59:15421–15429. https://doi.org/10.1021/acs.inorgchem.0c02419

    Article  CAS  PubMed  Google Scholar 

  18. Liu T, Yan B (2020) A stable broad-range fluorescent pH sensor based on Eu3+ post-synthetic modification of metal-organic framework. Ind Eng Chem Res 59:1764–1771. https://doi.org/10.1021/acs.iecr.9b06292

    Article  CAS  Google Scholar 

  19. Liu W, Sun R, Ge JF, Xu YJ, Xu Y, Lu JM, Itoh I, Ihara M (2013) Reversible near-infrared pH probes based on benzo[a]phenoxazine. Anal Chem 85:7419–7425. https://doi.org/10.1021/ac4013539

    Article  CAS  PubMed  Google Scholar 

  20. Alamry KA, Georgiev NI, El-Daly SA, Taib LA, Bojinov VB (2015) A highly selective ratiometric fluorescent pH probe based on a PAMAM wavelength-shifting bichromophoric system. Spectrochim Acta A 135:792–800. https://doi.org/10.1016/j.saa.2014.07.076

    Article  CAS  Google Scholar 

  21. Ryan LS, Gerberich J, Haris U, Nguyen D, Mason RP, Lippert AR (2020) Ratiometric pH imaging using a 1,2-dioxetane chemiluminescence resonance energy transfer sensor in live animals. ACS Sens 5:2925–2932. https://doi.org/10.1021/acssensors.0c01393

    Article  CAS  PubMed  Google Scholar 

  22. Feng Q, Li Y, Wang L, Li C, Wang J, Liu Y, Li K, Hou H (2016) Multiple-color aggregation-induced emission (AIE) molecules as chemodosimeters for pH sensing. Chem Commun 52:3123–3126. https://doi.org/10.1039/C5CC10423H

    Article  CAS  Google Scholar 

  23. Wen Y, Zhang W, Liu T, Huo F, Yin C (2017) A pinpoint diagnostic kit for heat stroke by monitoring lysosomal pH. Anal Chem 89:11869–11874. https://doi.org/10.1021/acs.analchem.7b03612

    Article  CAS  PubMed  Google Scholar 

  24. Lin B, Fan L, Ying Z, Ge J, Wang X, Zhang T, Dong C, Shuang S, Wong MS (2020) The ratiometric fluorescent probe with high quantum yield for quantitative imaging of intracellular pH. Talanta 208:120279. https://doi.org/10.1016/j.talanta.2019.120279

    Article  CAS  PubMed  Google Scholar 

  25. Cao L, Li X, Wang S, Li S, Li Y, Yang G (2014) A novel nanogel-based fluorescent probe for ratiometric detection of intracellular pH values. Chem Commun 50:8787–8790. https://doi.org/10.1039/C4CC03716B

    Article  CAS  Google Scholar 

  26. WangY, Zeng L, Zhou J, Jiang B, Zhao L, Wang C, Xu B (2019) A dansyl fluorescent pH probe with wide responsive range in aqueous solution. Spectrochim Acta A 223:117348. https://doi.org/10.1016/j.saa.2019.117348

    Article  CAS  Google Scholar 

  27. Qiu J, Jiang S, Guo H, Yang F (2018) An AIE and FRET-based BODIPY sensor with large Stoke shift: novel pH probe exhibiting application in CO32– detection and living cell imaging. Dyes Pigm 157:351–358. https://doi.org/10.1016/j.dyepig.2018.05.013

    Article  CAS  Google Scholar 

  28. Peng H, Stolwijk JA, Sun LN, Wegener J, Wolfbeis OS (2010) A nanogel for ratiometric fluorescent sensing of intracellular pH values. Angew Chem Int Ed 49:4246–4249. https://doi.org/10.1002/anie.200906926

    Article  CAS  Google Scholar 

  29. Yang Z, Qin W, Lam JWY, Chen S, Sung HHY, Williams ID, Tang BZ (2013) Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT Characteristics. Chem Sci 4:3725–3730. https://doi.org/10.1039/C3SC50648G

    Article  CAS  Google Scholar 

  30. Wang X, Wang H, Niu Y, Wang Y, Feng L (2020) A facile AIE fluorescent probe for broad range of pH detection. Spectrochim Acta A 226:117650. https://doi.org/10.1016/j.saa.2019.117650

    Article  CAS  Google Scholar 

  31. Shi X, Yan N, Niu G, Sung SHP, Liu Z, Liu J, Kwok RTK, Lam JWY, Wang WX, Sung HHY, Williams ID, Tang BZ In vivo monitoring of tissue regeneration using a ratiometric lysosomal AIE probe.Chem Sci11:3152–3163. https://doi.org/10.1039/C9SC06226B

  32. Shi L, Liu Y, Wang Q, Wang T, Ding Y, Cao Y, Li Z, Wei H (2018) A pH responsive AIE probe for enzyme assays. Analyst 143:741–746. https://doi.org/10.1039/C7AN01710C

    Article  CAS  PubMed  Google Scholar 

  33. Leung CWT, Hong Y, Chen S, Zhao E, Lam JWY, Tang BZ (2013) A photostable AIE luminogen for specific mitochondrial imaging and tracking. J Am Chem Soc 135:62–65. https://doi.org/10.1021/ja310324q

    Article  CAS  PubMed  Google Scholar 

  34. Long Z, Liu M, Jiang R, Wan Q, Mao L, Wan Y, Deng F, Zhang X, Wei Y (2017) Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. Chem Eng J 308:527–534. https://doi.org/10.1016/j.cej.2016.09.053

    Article  CAS  Google Scholar 

  35. Wang D, Qian J, Qin W, Qin A, Tang BZ, He S (2014) Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging. Sci Rep 4:4279. https://doi.org/10.1038/srep04279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sayed SM, Jia HR, Jiang YW, Zhu YX, Ma L, Sayed SM, Jia HR, Jiang YW, Zhu YX, Ma L, Yin F, Hussain I, Khan A, Ma Q, Wu FG, Lu X (2021) Photostable AIE probes for wash-free, ultrafast, and high-quality plasma membrane staining. J Mater Chem B 9:4303–4308. https://doi.org/10.1039/D1TB00049G

    Article  CAS  PubMed  Google Scholar 

  37. Feng G, Liu B (2018) Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc Chem Res 51:1404–1414. https://doi.org/10.1021/acs.accounts.8b00060

    Article  CAS  PubMed  Google Scholar 

  38. Lakshmi PR, Kumar PS, Elango KP (2020) A simple fluorophore-imine ensemble for colorimetric and fluorescent detection of CN and HS in aqueous solution. Spectrochim Acta A 229:117974. https://doi.org/10.1016/j.saa.2019.117974

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by Hainan Provincial Natural Science Foundation of China (222MS059), the National Natural Science Foundation of China (22061016) and Program for Innovative Research Team in University (IRT-16R19).

Author information

Authors and Affiliations

Authors

Contributions

EW contributed to the study conception and design, and was the major contributor in writing the manuscript. The synthesis, spectrum test, data analysis and so on were performed by QL with the assistance of XN. The X-ray diffraction data collection and structure determination was performed by ZN.

Corresponding author

Correspondence to Enju Wang.

Ethics declarations

Conflicts of Interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Niu, Z., Nan, X. et al. An AIE-Active probe for detection and bioimaging of pH values based on lactone hydrolysis reaction. J Fluoresc 32, 1611–1617 (2022). https://doi.org/10.1007/s10895-022-02967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02967-6

Keywords

Navigation