Skip to main content
Log in

The Preparation of Cu(II)- and Ag(I)-responsive Carbon Nanodots from the Right Amino-acid Carbon Source

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carbon nanodots (CDs) have exhibited excellent sensing capability for various metal ions. However, it is difficult to determine the selectivity of CDs to metal ions. In this work, we chose appropriate carbon source to design CD sensors against Cu(II) and Ag(I). Glycine, histidine and leucine have been confirmed to form complexes with Cu(II) and Ag(I), and were applied to prepare CDs using microwave heating method. The as-prepared CDs inherited the specific ion-binding capability from their carbon source and could response to both Cu(II) and Ag(I). The response sensitivity corresponded to the binding energy between the carbon source and metal ions. These experimental results are very important for the further design of CD sensors for a large variety of analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

Code Availability

Not applicable.

References

  1. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  2. Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253. https://doi.org/10.1039/C2JM34690G

    Article  CAS  Google Scholar 

  3. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381. https://doi.org/10.1039/C4CS00269E

    Article  CAS  PubMed  Google Scholar 

  4. Wu Y, Liu X, Wu Q, Yi J, Zhang G (2017) Differentiation and determination of metal ions using fluorescent sensor array based on carbon nanodots. Sens Actuators B Chem 246:680–685. https://doi.org/10.1016/j.snb.2017.02.132

    Article  CAS  Google Scholar 

  5. Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133(22):8424–8427. https://doi.org/10.1021/ja2015873

    Article  CAS  PubMed  Google Scholar 

  6. Wu Y, Liu X, Wu Q, Yi J, Zhang G (2017) Carbon nanodots-based fluorescent turn-on sensor array for biothiols. Anal Chem 89(13):7084–7089. https://doi.org/10.1021/acs.analchem.7b00956

    Article  CAS  PubMed  Google Scholar 

  7. Guo Y, Zhang L, Zhang S, Yang Y, Chen X, Zhang M (2015) Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron 63:61–71. https://doi.org/10.1016/j.bios.2014.07.018

    Article  CAS  PubMed  Google Scholar 

  8. Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z (2013) On–off–on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces 5(24):13242–13247. https://doi.org/10.1021/am4042355

    Article  CAS  PubMed  Google Scholar 

  9. Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. Trends Analyt Chem 89:163–180. https://doi.org/10.1016/j.trac.2017.02.001

    Article  CAS  Google Scholar 

  10. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24(15):2037–2041. https://doi.org/10.1002/adma.201200164

    Article  CAS  PubMed  Google Scholar 

  11. Yuan C, Liu B, Liu F, Han MY, Zhang Z (2014) Fluorescence “turn on” detection of mercuric ion based on bis(dithiocarbamato)copper(II) complex functionalized carbon nanodots. Anal Chem 86(2):1123–1130. https://doi.org/10.1021/ac402894z

    Article  CAS  PubMed  Google Scholar 

  12. Castro JL, López Ramírez MR, López Tocón I, Otero JC (2003) Vibrational study of the metal–adsorbate interaction of phenylacetic acid and α-phenylglycine on silver surfaces. J Colloid Interface Sci 263(2):357–363. https://doi.org/10.1016/s0021-9797(03)00257-1

    Article  CAS  PubMed  Google Scholar 

  13. Lee VWM, Li H, Lau T-C, Guevremont R, Michael Siu KW (1998) Relative silver(I) ion binding energies of α-amino acids: A determination by means of the kinetic method. J Am Soc Mass Spectrom 9(8):760–766. https://doi.org/10.1016/S1044-0305(98)00051-8

    Article  CAS  Google Scholar 

  14. Nimse S, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006. https://doi.org/10.1039/C4RA13315C

    Article  CAS  Google Scholar 

  15. Thomas G, Zacharias PS (1985) Mixed ligand Cu(II) amino acid complexes containing 2,2′-bipyridyl. Cyclic voltammetric studies of the reduction in aqueous media. Polyhedron 4(2):299–301. https://doi.org/10.1016/S0277-5387(00)84502-7

    Article  CAS  Google Scholar 

  16. Choi S-H, Lee S-H, Hwang Y-M, Lee K-P, Kang H-D (2003) Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiol group. Radiat Phys Chem 67(3):517–521. https://doi.org/10.1016/S0969-806X(03)00097-5

    Article  CAS  Google Scholar 

  17. Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, Cook N, Samuel E, Hwang C-C, Ruan G, Ceriotti G, Raji A-R, Martí A, Tour J (2013) Corrigendum: Coal as an abundant source of graphene quantum dots. Nat Commun 4:2943–2948. https://doi.org/10.1038/ncomms3943

    Article  CAS  PubMed  Google Scholar 

  18. Zhu S, Song Y, Wang J, Wan H, Zhang Y, Ning Y, Yang B (2017) Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today 13:10–14. https://doi.org/10.1016/j.nantod.2016.12.006

    Article  CAS  Google Scholar 

  19. Ju J, Zhang R, He S, Chen W (2014) Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv 4(94):52583–52589. https://doi.org/10.1039/C4RA10601F

    Article  CAS  Google Scholar 

  20. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  21. Shen C, Sun Y, Wang J, Lu Y (2014) Facile route to highly photoluminescent carbon nanodots for ion detection, pH sensors and bioimaging. Nanoscale 6(15):9139–9147. https://doi.org/10.1039/C4NR02154A

    Article  CAS  PubMed  Google Scholar 

  22. Wang D, Wang L, Dong X, Shi Z, Jin J (2012) Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon 50(6):2147–2154. https://doi.org/10.1016/j.carbon.2012.01.021

    Article  CAS  Google Scholar 

  23. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  24. Sun X, He J, Meng Y, Zhang L, Zhang S, Ma X, Dey S, Zhao J, Lei Y (2016) Microwave-assisted ultrafast and facile synthesis of fluorescent carbon nanoparticles from a single precursor: preparation, characterization and their application for the highly selective detection of explosive picric acid. J Mater Chem A 4(11):4161–4171. https://doi.org/10.1039/C5TA10027E

    Article  CAS  Google Scholar 

  25. Song Y, Zhu S, Zhang S, Fu Y, Wang L, Zhao X, Yang B (2015) Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C 3(23):5976–5984. https://doi.org/10.1039/C5TC00813A

    Article  CAS  Google Scholar 

  26. Ananthanarayanan A, Wang X, Routh P, Sana B, Lim S, Kim DH, Lim K, Li J, Chen P (2014) Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv Funct Mater 24(20):3021–3026. https://doi.org/10.1002/adfm.201303441

    Article  CAS  Google Scholar 

  27. Chandra S, Laha D, Pramanik A, Ray Chowdhuri A, Karmakar P, Sahu SK (2016) Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe(3+) ions in cancer cells. Luminescence 31(1):81–87. https://doi.org/10.1002/bio.2927

    Article  CAS  PubMed  Google Scholar 

  28. Huang Y, Zhou J, Feng H, Zheng J, Ma H-M, Liu W, Tang C, Ao H, Zhao M, Qian Z (2016) A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Biosens Bioelectron 86:748–755. https://doi.org/10.1016/j.bios.2016.07.081

    Article  CAS  PubMed  Google Scholar 

  29. Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J (2016) Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104:169–178. https://doi.org/10.1016/j.carbon.2016.04.003

    Article  CAS  Google Scholar 

  30. Gao X, Du C, Zhuang Z, Chen W (2016) Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 4(29):6927–6945. https://doi.org/10.1039/C6TC02055K

    Article  CAS  Google Scholar 

  31. Chen J, Li Y, Lv K, Zhong W, Wang H, Wu Z, Yi P, Jiang J (2016) Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sens Actuators B Chem 224:298–306. https://doi.org/10.1016/j.snb.2015.10.046

    Article  CAS  Google Scholar 

  32. Martin R-P, Mosoni L, Sarkar B (1971) Ternary coordination complexes between glycine, copper (II), and glycine peptides in aqueous solution. J Biol Chem 246(19):5944–5951. https://doi.org/10.1016/S0021-9258(18)61818-6

    Article  CAS  PubMed  Google Scholar 

  33. Nyberg M, Odelius M, Nilsson A, Pettersson L (2003) Hydrogen bonding between adsorbed deprotonated glycine molecules on Cu(110). J Chem Phys 119:12577–12585. https://doi.org/10.1063/1.1625640

    Article  CAS  Google Scholar 

  34. Caraiman D, Shoeib T, Michael Siu KW, Hopkinson AC, Bohme DK (2003) Investigations of the gas-phase reactivity of Cu+ and Ag+ glycine complexes towards CO, D2O and NH3. Int J Mass Spectrom 228(2):629–646. https://doi.org/10.1016/S1387-3806(03)00210-0

    Article  CAS  Google Scholar 

  35. Nomiya K, Takahashi S, Noguchi R, Nemoto S, Takayama T, Oda M (2000) Synthesis and characterization of water-soluble silver(I) complexes with l-Histidine (H2his) and (S)-(–)-2-Pyrrolidone-5-carboxylic acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis)]n and {[Ag(Hpyrrld)]2}n in the solid state. Inorg Chem 39(15):3301–3311. https://doi.org/10.1021/ic990526o

    Article  CAS  PubMed  Google Scholar 

  36. Abbaspour A, Kamyabi MA (2004) Characterization and determination of stability constants of copper(II)–l-histidine complexation system by using multivariate curve resolution method of visible spectra and two hard modeling methods in aqueous solutions. Anal Chim Acta 512(2):257–269. https://doi.org/10.1016/j.aca.2004.02.056

    Article  CAS  Google Scholar 

  37. Inci D, Aydin R, Zorlu Y (2016) Affinity of a new copper(II) complex to DNA/BSA and antioxidant/radical scavenging activities: crystal structure of [Cu(4,7-diphenyl-1,10-phenanthroline)(leucine)(NO3)(H2O)]. J Coord Chem 69(18):2677–2696. https://doi.org/10.1080/00958972.2016.1213390

    Article  CAS  Google Scholar 

  38. Gatlin CL, Tureček F, Vaisar T (1995) Gas-phase complexes of amino acids with Cu(II) and diimine ligands. Part I. Aliphatic and aromatic amino acids. J Mass Spectrom 30(11):1605–1616. https://doi.org/10.1002/jms.1190301114

    Article  CAS  Google Scholar 

  39. Gatlin CL, Tureček F, Vaisar T (1995) Gas-phase complexes of amino acids with Cu(II) and diimine ligands. Part II. Amino acids with O, N and S functional groups in the side-chain. J Mass Spectrom 30(11):1617–1627. https://doi.org/10.1002/jms.1190301115

    Article  CAS  Google Scholar 

  40. Shoeib T, Siu KWM, Hopkinson AC (2002) Silver ion binding energies of amino acids: use of theory to assess the validity of experimental silver ion basicities obtained from the kinetic method. J Phys Chem A 106(25):6121–6128. https://doi.org/10.1021/jp013662z

    Article  CAS  Google Scholar 

  41. Liu X, Li T, Wu Q, Yan X, Wu C, Chen X, Zhang G (2017) Carbon nanodots as a fluorescence sensor for rapid and sensitive detection of Cr(VI) and their multifunctional applications. Talanta 165:216–222. https://doi.org/10.1016/j.talanta.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  42. Hou Y, Liu X, Tang X, Li T, Wu Q, Jiang Y, Yi J, Zhang G (2017) Nucleobase chemosensor based on carbon nanodots. Talanta 173:107–112. https://doi.org/10.1016/j.talanta.2017.05.071

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (51,873,085).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Manling Chen: Investigation, Writing - Original Draft, Reviewing and Editing; Xue Liu: Conceptualization, Supervision, Project administration, Funding acquisition, Reviewing and Editing.

Corresponding author

Correspondence to Xue Liu.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2.93 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Liu, X. The Preparation of Cu(II)- and Ag(I)-responsive Carbon Nanodots from the Right Amino-acid Carbon Source. J Fluoresc 31, 1153–1160 (2021). https://doi.org/10.1007/s10895-021-02742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02742-z

Keywords

Navigation