Skip to main content
Log in

Probing the Interaction of Newly Synthesized Pt(II) Complex on Human Serum Albumin Using Competitive Binding Site Markers

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Considering the importance of pharmacology and the influence of drugs on biological materials, the effects of a newly designed and synthesized platin complex (2,2′-Bipyridine-3,3′-dicarboxylic acid, oxalato Platinum(II), as an antitumor drug was tested on the structure of blood carrier protein of human serum albumin (HSA) using various spectroscopic techniques including UV-visible, fluorescence, and circular dichroism at 25 and 37 °C. Results of the fluorescence measurements revealed that adding the complex caused reduction in intrinsic fluorescence emission of HSA resulted from dynamic quenching of HSA. The number of binding sites and binding constants were calculated at both temperatures of 25 and 37 °C. In addition, in order to identify the complex’s binding site on HSA employing spectroscopy, the competitive studies were followed using warfarin, digitoxin and ibuprofen as site markers of Sudlow sites I, II and III. Competitive binding test results have shown that Pt(II) complex bind on the warfarin binding site (or Sudlow sites I) on HSA. Besides, a reduction in thermal stability for HSA was observed in the presence of the newly designed Pt(II) complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Varshney A, Sen P, Ahmad E, Rehan M, Subbarao N, Khan RH (2010) Ligand binding strategies of human serum albumin: how can the cargo be utilized? Chirality 22(1):77–87

    Article  CAS  Google Scholar 

  2. Keppler BK (1993) Metal complexes in cancer chemotherapy. Wiley-VCH, Weinheim & New York

    Google Scholar 

  3. Kragh-Hansen U, Watanabe H, Nakajou K, Iwao Y, Otagiri M (2006) Chain length-dependent binding of fatty acid anions to human serum albumin studied by site-directed mutagenesis. J Mol Biol 363(3):702–712

    Article  CAS  Google Scholar 

  4. Divsalar A, Bagheri MJ, Saboury AA, Mansoori-Torshizi H, Amani M (2009) Investigation on the interaction of newly designed anticancer Pd (II) complexes with different aliphatic tails and human serum albumin. J Phys Chem B 113(42):14035–14042

    Article  CAS  Google Scholar 

  5. Yang F, Bian C, Zhu L, Zhao G, Huang Z, Huang M (2007) Effect of human serum albumin on drug metabolism: structural evidence of esterase activity of human serum albumin. J Struct Biol 157(2):348–355

    Article  CAS  Google Scholar 

  6. Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S (2003) Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct Biol 3(1):6

    Article  Google Scholar 

  7. Yamasaki K, Maruyama T, Kragh-Hansen U, Otagiri M (1996) Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim Biophys Acta 1295(2):147–157

    Article  Google Scholar 

  8. Ascenzi P, Fasano M (2010) Allostery in a monomeric protein: the case of human serum albumin. Biophys Chem 148(1–3):16–22

    Article  CAS  Google Scholar 

  9. Espósito BP, Najjar R (2002) Interactions of antitumoral platinum-group metallodrugs with albumin. Coord Chem Rev 232(1–2):137–149

    Article  Google Scholar 

  10. Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Mol Biol 5(9):827–835

    Article  CAS  Google Scholar 

  11. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin anatomy of drug site I. J Biol Chem 276(25):22804–22809

    Article  CAS  Google Scholar 

  12. Sudlow G, Birkett D, Wade D (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12(6):1052–1061

    CAS  PubMed  Google Scholar 

  13. Liu X, Li S, Zhang J, Chen X (2009) Flow injection-capillary electrophoresis frontal analysis method for the study of the interactions of a series of drugs with human serum albumin. J Chromatogr B 877(27):3144–3150

    Article  CAS  Google Scholar 

  14. Divsalar A, Khodabakhshian S (2015) Probing the binding site of a new synthesized anti-cancer compound to HSA via competitive ligand binding method. J Mol Liq 206:82–88

    Article  CAS  Google Scholar 

  15. DESOIZE B (2004) Metals and metal compounds in cancer treatment. Anticancer Res 24(3A):1529–1544

    CAS  PubMed  Google Scholar 

  16. Tušek-Božić L, Juribašić M, Traldi P, Scarcia V, Furlani A (2008) Synthesis, characterization and antitumor activity of palladium (II) complexes of monoethyl 8-quinolylmethylphosphonate. Polyhedron 27(4):1317–1328

    Article  Google Scholar 

  17. Polyanskaya TV, Kazhdan I, Motley DM, Walmsley JA (2010) Synthesis, characterization and cytotoxicity studies of palladium (II)–proflavine complexes. J Inorg Biochem 104(11):1205–1213

    Article  CAS  Google Scholar 

  18. Pourgonabadi S, Reza Saberi M, Khan Chamani J (2011) Investigating the antagonistic action between aspirin and tamoxifen with hsa: identification of binding sites in binary and ternary drug-protein systems by spectroscopic and molecular modeling approaches. Protein Pept Lett 18(3):305–317

    Article  CAS  Google Scholar 

  19. Ghalandari B, Divsalar A, Saboury AA, Haertlé T, Parivar K, Bazl R, Eslami-Moghadam M, Amanlou M (2014) Spectroscopic and theoretical investigation of oxali-palladium interactions with β-lactoglobulin. Spectrochim Acta A Mol Biomol Spectrosc 118:1038–1046

    Article  CAS  Google Scholar 

  20. Saeidifar M, Mansouri-Torshizi H, Divsalar A, Saboury AA (2013) Spectroscopic investigation on the binding of the antitumoral Pd (II) complex to human serum albumin. J Chin Chem Soc 60(2):133–139

    Article  CAS  Google Scholar 

  21. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  22. Abbasi-Tajarag K, Divsalar A, Saboury AA, Ghalandari B, Ghourchian H (2015) Destructive effect of anticancer oxali-palladium on heme degradation through the generation of endogenous hydrogen peroxide. J Biomol Struct Dyn 34(11):2493–2504

    Article  Google Scholar 

  23. Song M, Liu S, Yin J, Wang H (2011) Interaction of human serum album and C60 aggregates in solution. Int J Mol Sci 12(8):4964–4974

    Article  CAS  Google Scholar 

  24. Curry S (2002) Beyond expansion: structural studies on the transport roles of human serum albumin. Vox Sang 83:315–319

    Article  CAS  Google Scholar 

  25. Divsalar A, Saboury AA, Mansoori-Torshizi H, Ahmad F (2010) Design, synthesis, and biological evaluation of a new palladium (II) complex: β-lactoglobulin and K562 as targets. J Phys Chem B 114(10):3639–3647

    Article  CAS  Google Scholar 

  26. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR (2002) Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol 64(9):1355–1374

    Article  CAS  Google Scholar 

  27. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20(11):3096–3102

    Article  CAS  Google Scholar 

  28. Mallick A, Haldar B, Chattopadhyay N (2005) Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6, 7-dihydro-12H indolo-[2, 3-a] quinolizine with serum albumins. J Phys Chem B 109(30):14683–14690

    Article  CAS  Google Scholar 

  29. Yue Y, Chen X, Qin J, Yao X (2009) Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling. Colloids Surf B: Biointerfaces 69(1):51–57

    Article  CAS  Google Scholar 

  30. Divsalar A, Saboury AA, Ahadi L, Zemanatiyar E, Mansouri-Torshizi H (2010) Investigation of effects of newly synthesized Pt (II) complex against human serum albumin and leukemia cell line of K562. BMB Rep 43(11):766–771

    Article  CAS  Google Scholar 

  31. Singha Roy A, Ghosh KS, Dasgupta S (2013) An investigation into the altered binding mode of green tea polyphenols with human serum albumin on complexation with copper. J Biomol Struct Dyn 31(10):1191–1206

    Article  CAS  Google Scholar 

  32. Curry S (2009) Lessons from the crystallographic analysis of small molecule binding to human serum albumin. Drug Metab Pharmacokinet 24(4):342–357

    Article  CAS  Google Scholar 

  33. Sarraf N et al (2005) Thermodynamic studies on the interaction of copper ions with carbonic anhydrase. Bull Kor Chem Soc 26(7):1051–1056

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Research Council of Kharazmi University for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeleh Divsalar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najaran, A., Divsalar, A., Saboury, A.A. et al. Probing the Interaction of Newly Synthesized Pt(II) Complex on Human Serum Albumin Using Competitive Binding Site Markers. J Fluoresc 29, 827–835 (2019). https://doi.org/10.1007/s10895-019-02383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02383-3

Keywords

Navigation