Skip to main content
Log in

Design and Synthesis of Nanosensor Based on CdSe Quantum Dots Functionalized with 8-Hydroxyquinoline: a Fluorescent Sensor for Detection of Al3+ in Aqueous Solution

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel nanosensor based on CdSe quantum dots (QDs) capped with 8-hydroxyqunoline (HQ) was developed for Al3+ ions determination in aqueous solutions. The method is based on the fluorescence enhancement of the HQ functionalized QDs in the presence of Al3+ ions, due to the strong interaction between Al3+ and HQ. Prepared nanosensor exhibited an acceptable selectivity and sensitivity for Al3+ ions in the presence of other metal ions. Plot of Log(I/I0) against Log[Al3+] shows a good linearity in the range of 0.02–3.0 mM, and the method could be used for detection of Al3+ ions concentration in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82(11):789–802

    Article  PubMed  CAS  Google Scholar 

  2. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107(2):315–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48(1):75–92

    Article  CAS  Google Scholar 

  4. Proudfoot AT (2009) Aluminium and zinc phosphide poisoning. Clin Toxicol 47(2):89–100

    Article  CAS  Google Scholar 

  5. Wang B, Xing W, Zhao Y, Deng X (2010) Effects of chronic aluminum exposure on memory through multiple signal transduction pathways. Environ Toxicol Pharmacol 29(3):308–313

    Article  PubMed  CAS  Google Scholar 

  6. Kunkel R, Manahan SE (1973) Atomic absorption analysis of strong heavy metal chelating agents in water and waste water. Anal Chem 45(8):1465–1468

    Article  PubMed  CAS  Google Scholar 

  7. Rezaaiyaan R, Hieftje G, Anderson H, Kaiser H, Meddings B (1982) Design and construction of a low-flow, low-power torch for inductively coupled plasma spectrometry. Appl Spectrosc 36(6):627–631

    Article  CAS  Google Scholar 

  8. Bings NH, Bogaerts A, Broekaert JA (2006) Atomic spectroscopy. Anal Chem 78(12):3917–3946

    Article  PubMed  CAS  Google Scholar 

  9. Xu W, Zhou Y, Huang D, Su M, Wang K, Hong M (2014) A highly sensitive and selective fluorescent sensor for detection of Al3+ using a europium (III) quinolinecarboxylate. Inorg Chem 53(13):6497–6499

    Article  PubMed  CAS  Google Scholar 

  10. Sahana A, Banerjee A, Lohar S, Sarkar B, Mukhopadhyay SK, Das D (2013) Rhodamine-based fluorescent probe for Al3+ through time-dependent PET–CHEF–FRET processes and its cell staining application. Inorg Chem 52(7):3627–3633

    Article  PubMed  CAS  Google Scholar 

  11. Maity D, Govindaraju T (2010) Conformationally constrained (coumarin− triazolyl− bipyridyl) click fluoroionophore as a selective Al3+ sensor. Inorg Chem 49(16):7229–7231

    Article  PubMed  CAS  Google Scholar 

  12. Li Y-P, Liu X-M, Zhang Y-H, Chang Z (2013) A fluorescent and colorimetric sensor for Al 3+ based on a dibenzo-18-crown-6 derivative. Inorg Chem Commun 33:6–9

    Article  CAS  Google Scholar 

  13. Li Y-W, Li J-R, Wang L-F, Zhou B-Y, Chen Q, Bu X-H (2013) Microporous metal–organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. J Mater Chem A 1(3):495–499

    Article  CAS  Google Scholar 

  14. Ekimov A, Onushchenko A (1982) Quantum size effect in the optical-spectra of semiconductor micro-crystals. Soviet Physics Semiconductors-Ussr 16(7):775–778

    Google Scholar 

  15. Cai W, Shin D-W, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676

    Article  PubMed  CAS  Google Scholar 

  16. Lee J, Govorov AO, Dulka J, Kotov NA (2004) Bioconjugates of CdTe nanowires and au nanoparticles: plasmon− exciton interactions, luminescence enhancement, and collective effects. Nano Lett 4(12):2323–2330

    Article  CAS  Google Scholar 

  17. Eftekhari-Sis B, Malekan F, Younesi Araghi H (2018) CdSe quantum dots capped with p-nitrophenyldiazenylphenyloxadiazole: a nanosensor for Cd2+ ions in aqueous media. Can J Chem 96(4):371–376

    Article  CAS  Google Scholar 

  18. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74(19):5132–5138

    Article  PubMed  CAS  Google Scholar 

  19. Lou Y, Zhao Y, Chen J, Zhu J-J (2014) Metal ions optical sensing by semiconductor quantum dots. J Mater Chem C 2(4):595–613

    Article  CAS  Google Scholar 

  20. Eftekhari-Sis B, Karaminejad S, Malekan F, Araghi HY, Akbari A (2017) CdSe quantum dots based Nano-biosensor for detection of 185delAG mutation in BRCA1 gene, responsible for breast Cancer. J Inorg Organomet Polym Mater 27(6):1911–1917

    Article  CAS  Google Scholar 

  21. Jiang X-h, B-d W, Z-y Y, Y-c L, Li T-r, Z-c L (2011) 8-Hydroxyquinoline-5-carbaldehyde Schiff-base as a highly selective and sensitive Al3+ sensor in weak acid aqueous medium. Inorg Chem Commun 14(8):1224–1227

    Article  CAS  Google Scholar 

  22. Tang X-L, Peng X-H, Dou W, Mao J, Zheng J-R, Qin W-W, Liu W-S, Chang J, Yao X-J (2008) Design of a semirigid molecule as a selective fluorescent chemosensor for recognition of cd (II). Org Lett 10(17):3653–3656

    Article  PubMed  CAS  Google Scholar 

  23. Youk J-S, Kim YH, Kim E-J, Youn NJ, Chang S-K (2004) Hg2+-selective Chemosensor derived from 8-Hydroxyquinoline having Benzothiazole function in aqueous environment. Bulletin-Korean Chemical Society 25(6):869–872

    Article  CAS  Google Scholar 

  24. Mukherjee M, Sen B, Pal S, Hundal MS, Mandal SK, Khuda-Bukhsh AR, Chattopadhyay P (2013) A cell permeable Cr 3+ selective chemosensor and its application in living cell imaging. RSC Adv 3(43):19978–19984

    Article  CAS  Google Scholar 

  25. Qin J-c, Yang Z-y (2015) Selective fluorescent sensor for Al 3+ using a novel quinoline derivative in aqueous solution. Synth Met 209:570–576

    Article  CAS  Google Scholar 

  26. Eftekhari-Sis B, Karaminejad S, Karimi F (2016) A Nano-biosensor for the detection of 185delAG mutation in BRCA1 gene, leading to breast Cancer. Cancer Investig 34(9):431–439

    Article  CAS  Google Scholar 

  27. Eftekhari-Sis B, Mirdoraghi S (2016) Graphene oxide-terpyridine conjugate: a highly selective colorimetric and sensitive fluorescence Nano-chemosensor for Fe2+ in aqueous media. Nanochemistry Research 1(2):214–221

    Google Scholar 

  28. Audic N, Potier G, Sasaki NA (2013) New 2, 3-diaminopropionic acid inhibitors of AGE and ALE formation. Org Biomol Chem 11(5):773–780

    Article  PubMed  CAS  Google Scholar 

  29. Silva FO, Carvalho MS, Mendonça R, Macedo WA, Balzuweit K, Reiss P, Schiavon MA (2012) Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Res Lett 7(1):536

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang H, Zhou Z, Yang B, Gao M (2003) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107(1):8–13

    Article  CAS  Google Scholar 

  31. Oluwafemi S, Revaprasadu N, Ramirez A (2008) A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. J Cryst Growth 310(13):3230–3234

    Article  CAS  Google Scholar 

  32. Aldeek F, Mustin C, Balan L, Medjahdi G, Roques-Carmes T, Arnoux P, Schneider R (2011) Enhanced photostability from CdSe (S)/ZnO core/shell quantum dots and their use in biolabeling. Eur J Inorg Chem 2011(6):794–801

    Article  CAS  Google Scholar 

  33. Cooper JK, Franco AM, Gul S, Corrado C, Zhang JZ (2011) Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption. Langmuir 27(13):8486–8493

    Article  PubMed  CAS  Google Scholar 

  34. Kosa SA, Al-Zhrani G, Salam MA (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J 181:159–168

    Article  CAS  Google Scholar 

  35. Zhang A, Bian Y, Wang J, Chen K, Dong C, Ren J (2016) Suppressed blinking behavior of CdSe/CdS QDs by polymer coating. Nano 8(9):5006–5014

    CAS  Google Scholar 

  36. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860

    Article  CAS  Google Scholar 

  37. Wei G, Keller TF, Zhang J, Jandt KD (2011) Novel 1-D biophotonic nanohybrids: protein nanofibers meet quantum dots. Soft Matter 7(5):2011

    Article  CAS  Google Scholar 

  38. Afaneh AT, Schreckenbach G (2015) Fluorescence enhancement/quenching based on metal orbital control: computational studies of a 6-thienyllumazine-based mercury sensor. J Phys Chem A 119(29):8106–8116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by research council of the University of Maragheh. Iran Science Elites Federation (ISEF) was also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bagher Eftekhari-Sis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhari-Sis, B., Samadneshan, K. & Vahdati-Khajeh, S. Design and Synthesis of Nanosensor Based on CdSe Quantum Dots Functionalized with 8-Hydroxyquinoline: a Fluorescent Sensor for Detection of Al3+ in Aqueous Solution. J Fluoresc 28, 767–774 (2018). https://doi.org/10.1007/s10895-018-2238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2238-z

Keywords

Navigation