Skip to main content
Log in

Template Synthesis, Spectral, Thermal and Glucose Sensing of Pr3+ Complexes of Metformin Schiff-Bases

  • FLUORESCENCE NEWS ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Schiff-bases of metformin with each of salicylaldehyde (HL1); 2,3-dihydroxybenzaldehyde (H2L2); 2,4-dihydroxybenzaldehyde (H2L3); 2,5-dihydroxybenzaldehyde (H2L4); 3,4-dihydroxybenzaldehyde (H2L5) and 2-hydroxynaphthaldehyde (HL6) and their complexes with Pr(III) were synthesized by template reaction. The complexes were characterized through elemental analysis, conductivity and magnetic moment measurements, IR, UV-Vis., fluorescence, GC-MS and XRD spectroscopy. The complexes exhibit a series of characteristic emission bands for Pr3+ ion in the 481-472 and 590-580 nm range with a 318-332 nm excitation source. The complexes have eight coordinated structure with the formulae [PrL1-4,6(NO3)2(H2O)3].nH2O where n = 1, 1½, 3, 4, 4 and [PrL5(NO3)(H2O)5].2H2O. The suggested stereochemistry was confirmed using TGA, DTG and DTA analysis and a mechanism for thermal decomposition was proposed. Coates-Redfern equation was used to calculate kinetic and thermodynamic parameters of the main decomposition step. The utility of the complexes towards the detection of glucose at physiologically relevant pH in phosphate buffer using UV-Vis and fluorescence spectroscopy as well as viscosity measurements are tried where the association constants were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Structure 1
Fig. 1
Fig. 2
Fig. 3
Structure 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stepensky D, Friedman M, Srour W, Raz I, Hoffman A (2001) Preclinical evaluation of pharmacokinetic–pharmacodynamic rationale for oral CR metformin formulation. J Control Release 71:107–115

    Article  CAS  PubMed  Google Scholar 

  2. Babykutty PV, Parbhakaran CP, Anantaraman R, Nair CGR (1974) Electronic and infrared spectra of biguanide complexes of the 3d-transition metals. J Inorg Nucl Chem 36:3685–3688

    Article  CAS  Google Scholar 

  3. Subasinghe S, Greenbaum AL, McLean P (1985) The insulin-mimetic action of Mn2+: involvement of cyclic nucleotides and insulin in the regulation of hepatic hexokinase and glucokinase. Biochem Med 34:83–92

    Article  CAS  PubMed  Google Scholar 

  4. Zhu M, Lu L, Yang P, Jin X (2002) Bis(1,1-di-methylbiguanido)copper(II) octahydrate. Acta Crystallogr E58:m217–m219

    Google Scholar 

  5. Patrinoiu G, Patron L, Carp O, Stanica N (2003) Thermal behaviour of some iron(III) complexes with active therapeutically biguanides. J Therm Anal Calorim 72(2):489–495

    Article  CAS  Google Scholar 

  6. Olar R, Badea M, Cristurean E, Lazar V, Cernat R, Balotescu C (2005) Thermal behavior, spectroscopic and biological characterization of co(II), Zn(II), Pd(II) and Pt(II) complexes with N,N-dimethylbiguanide. J Therm Anal Calorim 80(2):451–455

    Article  CAS  Google Scholar 

  7. Al-Saif FA, Refat MS (2013) Synthesis, spectroscopic, and thermal investigation of transition and non-transition complexes of metformin as potential insulin-mimetic agents. J Therm Anal Calorim 111:2079–2096

    Article  CAS  Google Scholar 

  8. El-Megharbel SM (2015) Synthesis, Characterization and Antidiabetic Activity of Chromium (III) Metformin Complex. J Microb Biochem Technol 7:65–75

    CAS  Google Scholar 

  9. Gao JA (2007) A weak hydrolytical copper(II) complex derived from condensation of N,N-Dimethylbiguanide with 2-Pyridinecarbaldehyde synthesis, crystal structure and biological activity. Synth React Inorg Met-Org Nano-Met Chem 37(8):621–625

    CAS  Google Scholar 

  10. Olar R, Badea M, Marinescu D, Iorgulescu E, Stoleriu S (2005) Ni(II) complexes with ligands resulted in condensation of N,N-dimethylbiguanide and pentane-2,4-dione. J Therm Anal Calorim 80:363–367

    Article  CAS  Google Scholar 

  11. Mahmoud MA, Zaitone SA, Ammar AM, Sallam SA (2006) Structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases. J Mol Struct 1108:60–70

    Article  CAS  Google Scholar 

  12. Mahmoud MA, Zaitone SA, Ammar AM, Sallam SA (2017) Synthesis, spectral, thermal and insulin enhancing properties of oxovanadium(IV) complexes of metformin Schiff-bases. J Therm Anal Calorim 128:957–969

    Article  CAS  Google Scholar 

  13. Mahmoud MA, Ammar AA, Sallam SA (2017) Synthesis, characterization and toxicity of cu(II) complexes with metformin Schiff-bases. J Chin Adv Mat Soc 5:75–102

    Google Scholar 

  14. Taha ZA, Ajlouni AM, Al-Hassan KA, Hijazi AK, Faiq AB (2011) Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes. Spectrochim Acta A81:317–323

    Article  CAS  Google Scholar 

  15. Kapoor P, Fahmi N, Singh RV (2011) Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines. Spectrochim Acta A83:74–81

    Article  CAS  Google Scholar 

  16. Kostova I, Manolov I, Momekov G (2004) Cytotoxic activity of new neodymium (III) complexes of bis-coumarins. Eur J Med Chem 39:765–775

    Article  CAS  PubMed  Google Scholar 

  17. Łyszczek R (2012) Hydrothermal synthesis, thermal and luminescent investigations of lanthanide(III) coordination polymers based on the 4,4′-oxybis(benzoate) ligand. J Therm Anal Calorim 108:1101–1110

    Article  CAS  Google Scholar 

  18. Yi-Bo Z, Yang N, Liu W-S, Tang N (2003) Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin. J Inorg Biochem 97:258–264

    Article  CAS  Google Scholar 

  19. Wang ZM, Lin HK, Zhu SR, Liu TF, Zhou ZF, Chen YT (2000) Synthesis, characterization and cytotoxicity of lanthanum(III) complexes with novel 1,10-phenanthroline-2,9-bis-[agr]-amino acid conjugates. Anticancer Drug Des 15:405–411

    CAS  PubMed  Google Scholar 

  20. Aime S, Crich SG, Gianolio E, Giovenzana GB, Tei L, Terreno E (2000) High sensitivity lanthanide(III) based probes for MR-medical imaging. Coord Chem Rev 250:1562–1597

    Article  CAS  Google Scholar 

  21. Figgis NB, Lewis J (1960) In: Lewis J, Wilkins RG (eds) The Magnetochemistry of complex compounds. Interscience, New York

    Google Scholar 

  22. Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  23. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds: applications in coordination, organometallic, and bioinorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  24. Kumar DS, Alexander V (1995) Macrocyclic complexes of lanthanides in identical ligand frameworks part 1. Synthesis of lanthanide(III) and yttrium(III) complexes of an 18-membered dioxatetraaza macrocycle. Inorg Chim Acta 238:63–71

    Article  CAS  Google Scholar 

  25. Ankolekar VN, Mahale VB (2000) Synthesis and Spectroscopic Investigations of Lanthanide(III) Nitrate Complexes with Ligands Obtained from 2,6-diformyl-4-methylphenol. Synth React Inorg Met-Org Chem 30:1193–1209

    Article  CAS  Google Scholar 

  26. Alaudeen M, Prabhakaran CP (1996) Synthesis and characterization of iron(III) complexes of N-(2-thienylidene )-N'-isonicotinoylhydrazine, N-(2-furylidene)-N'-salicyloylhydrazine and N-(2-thienylidene)-N'-salicyloylhydrazine. Indian J Chem A35:517–519

    Google Scholar 

  27. Muraleedharan Nair MK, Radhakrishnan PK (1996) Synthesis and physicochemical studies of yttrium and lanthanide nitrate complexes of 1,2-(diimino-4-antipyrinyl)ethane. Proc Ind Acad Sci (Chem. Sci) 108:345–350

  28. Pearson RG (1936) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  Google Scholar 

  29. Carlin RL (1986) Magnetochemistry. Springer, New York

    Book  Google Scholar 

  30. Tandon SP, Mehta PC (1970) Study of Some Nd3+ Complexes: Interelectronic Repulsion, Spin–Orbit Interaction, Bonding, and Electronic Energy Levels. J Chem Phys 52:4896–4902

    Article  CAS  Google Scholar 

  31. Ambroziak K, Rozwadowski Z, Dziembowska T, Bieg B (2002) Synthesis and spectroscopic study of Schiff bases derived from trans-1,2-diaminocyclohexane. Deuterium isotope effect on 13C chemical shift. J Mol Struct 615:109–120

    Article  CAS  Google Scholar 

  32. Issa RM, Khedr AM, Rizk HF (2005) UV–vis, IR and 1H NMR spectroscopic studies of some Schiff bases derivatives of 4-aminoantipyrine. Spectrochim Acta A62:621–629

    Article  CAS  Google Scholar 

  33. Jørgensen CK (1957) Absorption spectra of dysprosium(III), holmium(III), and erbium(III) Aquo ions. Acta Chem Scand 11:981–989

    Article  Google Scholar 

  34. Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels in the trivalent lanthanide Aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J Chem Phys 49:4424–4442

    Article  CAS  Google Scholar 

  35. Pandey UK, Pandey OP, Sengupta SK, Tripathi SC (1987) Syntheses and spectroscopic studies on TETRAAZA MACROCYCLIC complexes of praseodymium(iii). Polyhedron 6:1611–1617

    Article  CAS  Google Scholar 

  36. Davies GM, Aarons RJ, Motson GR, Jeffery JC, Adams H, Faulkner S, Ward MD (2004) Structural and near-IR photophysical studies on ternary lanthanide complexes containing poly(pyrazolyl)borate and 1,3-diketonate ligands. Dalton trans 1136-1144; Voloshin AI, Shavaleev NM, Kazakov VB (2001) luminescence of praseodymium (III) chelates from two excited states (3P0 and 1D2) and its dependence on ligand triplet state energy. J Lumin 93:199–204

    Google Scholar 

  37. Yan B, Zhang HJ, Zhou GL, Ni JZ (2003) Different thermal decomposition process of lanthanide complexes with N-phenylanthranilic acid in air and nitrogen atmosphere. Chem Pap 57:83–86

    CAS  Google Scholar 

  38. Carp O, Gingasu D, Mindru I, Patron L (2006) Thermal decomposition of some copper–iron polynuclear coordination compounds containing glycine as ligand, precursors of copper ferrite. Thermochim Acta 449:55–60

    Article  CAS  Google Scholar 

  39. Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New York

    Book  Google Scholar 

  40. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  41. Frost AA, Pearson RG (1961) Kinetics and mechanism. Wiley, New York

    Google Scholar 

  42. Wells AF (1984) Structural inorganic chemistry, 5th edn. Science Publications, Oxford

    Google Scholar 

  43. Steiner M-S, Duerkop A, Wolfbies OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839

    Article  CAS  PubMed  Google Scholar 

  44. Alptürk O, Rusin O, Fakayode SO, Wang W, Escobedo JO, Warner IM, Crowe WE, Král V, Pruet JM, Strongin RM (2006) Lanthanide complexes as fluorescent indicators for neutral sugars and cancer biomarkers. Proc Natl Acad Sci U S A 103:9756–9760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang L, Su Y, Xu Y, Zhang S, Wu J, Zhao K (2004) Interactions between metal ions and carbohydrates: the coordination behavior of neutral erythritol to zinc and europium nitrate. J Inorg Biochem 98:1251–1260

    Article  CAS  PubMed  Google Scholar 

  46. Battistini E, Mortillaro A, Aime S, Peters JA (2007) Molecular recognition of sugars by lanthanide (III) complexes of a conjugate of N, N-bis[2-[bis[2-(1, 1-dimethylethoxy)-2-oxoethyl]amino]ethyl]glycine and phenylboronic acid. Contrast Media Mol Imaging 2:163–171

    Article  CAS  PubMed  Google Scholar 

  47. Lu Y, Deng G, Miao F, Li Z (2003) Metal ion interactions with sugars. The crystal structure and FT-IR study of the NdCl3–ribose complex. Carbohydr Res 338:2913–2919

    Article  CAS  PubMed  Google Scholar 

  48. Wang W, Gao X, Wang B (2002) Boronic acid-based sensors. Curr Org Chem 6:1285–1317

    Article  CAS  Google Scholar 

  49. Benesi HA, Hildebrand JH (1949) A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  50. Springsteen G, Wang B (2002) A detailed examination of boronic acid–diol complexation. Tetrahedron 58:5291–5300

    Article  CAS  Google Scholar 

  51. Sun Y, Bi S, Song D, Qiao C, Mu D, Zhang H (2008) Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi. Sens Actuators B: Chem 129:799–810

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehab Sallam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Supplementary data related to this article contain representative examples of: IR spectra (S1and S2), UV-Vis spectra (S3 and S4), fluorescence spectra (S5 and S6), mass spectra (S7) of the complexes.

ESM 1

(PDF 1665 kb)

ESM 2

(PDF 1889 kb)

ESM 3

(PDF 302 kb)

ESM 4

(PDF 456 kb)

ESM 5

(PDF 235 kb)

ESM 6

(PDF 299 kb)

ESM 7

(PDF 1743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M., Abdel-Salam, E., Abou-Elmagd, M. et al. Template Synthesis, Spectral, Thermal and Glucose Sensing of Pr3+ Complexes of Metformin Schiff-Bases. J Fluoresc 29, 319–333 (2019). https://doi.org/10.1007/s10895-018-02341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-02341-5

Keywords

Navigation