Skip to main content
Log in

A Highly Selective Naphthalimide-Based Chemosensor: “Naked-Eye” Colorimetric and Fluorescent Turn-On Recognition of Al3+ and Its Application in Practical Samples, Test Paper and Logic Gate

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel naphthalimide-based colorimetric and fluorescent turn-on chemosensor for Al3+ was synthesized and characterized with spectroscopic techniques. In MeOH solution, BPAM showed high selectivity and sensitivity to Al3+ by a 60-fold fluorescence enhancement and blue-shift absorption with visible color changes attributed to the contribution of chelation enhanced fluorescence (CHEF) and inhibition of intramolecular charge transfer (ICT). A 1:1 BPAM-Al3+ complex confirmed by job’s plot and HRMS with a binding constant of 6.37 × 104 M− 1, and the detection limit for Al3+ was as low as 1.59 × 10− 7 M. BPAM was successfully applied in real sample detection and assessing the existence of Al3+ by a colorimetric method on filter paper. Furthermore, the fluorescent signals of BPAM were designed to construct an INHIBIT molecular logic gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dong Y, Liu T, Wan X, Pei H, Wu L, Yao Y (2017) Facile one-pot synthesis of bipyridine-based dual-channel chemosensor for the highly selective and sensitive detection of aluminum ion. Sensors Actuators B Chem 241:1139–1144. https://doi.org/10.1016/j.snb.2016.10.022

    Article  CAS  Google Scholar 

  2. Liu H, Zhang B, Tan C, Liu F, Cao J, Tan Y, Jiang Y (2016) Simultaneous bioimaging recognition of Al3+ and Cu2+ in living-cell, and further detection of F and S2– by a simple fluorogenic benzimidazole-based chemosensor. Talanta 161:309–319. https://doi.org/10.1016/j.talanta.2016.08.061

    Article  CAS  PubMed  Google Scholar 

  3. Kim HS, Angupillai S, Son YA (2016) A dual chemosensor for both Cu2+ and Al3+: a potential Cu2+ and Al3+ switched YES logic function with an INHIBIT logic gate and a novel solid sensor for detection and extraction of Al3+ ions from aqueous solution. Sensors Actuators B Chem 222:447–458. https://doi.org/10.1016/j.snb.2015.08.001

    Article  CAS  Google Scholar 

  4. Sahana S, Bose S, Mukhopadhyay SK, Bharadwaj PK (2016) A highly selective and sensitive turn-on fluorescence chemosensor based on a rhodamine–adenine conjugate for Al3+ in aqueous medium: bioimaging and DFT studies. J Lumin 169:334–341. https://doi.org/10.1016/j.jlumin.2015.09.009

    Article  CAS  Google Scholar 

  5. Paul S, Manna A, Goswami S (2015) A differentially selective molecular probe for detection of trivalent ions (Al3+, Cr3+ and Fe3+) upon single excitation in mixed aqueous medium. Dalton Trans 44:11805–11810. https://doi.org/10.1039/C5DT01314C

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Liao CY, Huang SS, Xu H, Zheng B. Du J (2016) A selective fluorescent probe based on bis-Schiff base for “turn-on” detection of Al3+ and cysteine by different mechanisms. Rsc Adv 6:25420–25426. https://doi.org/10.1039/C6RA02030E

    Article  CAS  Google Scholar 

  7. Qin JC, Fan L, Wang BD, Yang ZY, Li TR (2015) The design of a simple fluorescent chemosensor for Al3+/Zn2+ via two different approaches. Anal Methods 7:716–722. https://doi.org/10.1039/C4AY02351J

    Article  CAS  Google Scholar 

  8. Hossain SM, Singh K, Lakma A, Pradhan RN, Singh AK (2017) A schiff base ligand of coumarin derivative as an ICT-based fluorescence chemosensor for Al3+. Sensors Actuators B Chem 239:1109–1117. https://doi.org/10.1016/j.snb.2016.08.093

    Article  CAS  Google Scholar 

  9. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321. https://doi.org/10.1104/pp.107.2.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang L, Liu YT, Li NN, Dang QX, Xing ZY, Li JL, Zhang Y (2017) A schiff-base receptor based naphthalimide derivative: highly selective and colorimetric fluorescent turn-on sensor for Al3+. J Lumin 186:48–52. https://doi.org/10.1016/j.jlumin.2016.12.056

    Article  CAS  Google Scholar 

  11. Kang L, Xing ZY, Ma XY, Liu YT, Zhang Y (2016) A highly selective colorimetric and fluorescent turn-on chemosensor for Al3+ based on naphthalimide derivative. Spectrochim Acta A Mol Biomol Spectrosc 167:59–65. https://doi.org/10.1016/j.saa.2016.05.030

    Article  CAS  PubMed  Google Scholar 

  12. Liu Z, He W, Guo Z (2013) Metal coordination in photoluminescent sensing. Chem Soc Rev 42:1568–1600. https://doi.org/10.1039/C2CS35363F

    Article  PubMed  Google Scholar 

  13. Wu JS, Liu WM, Ge JC, Zhang HY, Wang PF (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495. https://doi.org/10.1039/C0CS00224K

    Article  CAS  PubMed  Google Scholar 

  14. Yoon J, Kim SK, Singh NJ, Kim KS (2006) Imidazolium receptors for the recognition of anions. Chem Soc Rev 35:355–360. https://doi.org/10.1039/B513733K

    Article  CAS  PubMed  Google Scholar 

  15. Banerjee S, Brandão P, Saha A (2016) A robust fluorescent chemosensor for aluminium ion detection based on a Schiff base ligand with an azo arm and application in a molecular logic gate. RSC Adv 6:101924–101936. https://doi.org/10.1039/C6RA21217D

    Article  CAS  Google Scholar 

  16. Gupta A, Kumar N (2016) A review of mechanisms for fluorescent “turn-on” probes to detect Al3+ ions. RSC Adv 6:106413–106434. https://doi.org/10.1039/C6RA23682K

    Article  CAS  Google Scholar 

  17. Sheet SK, Sen B, Thounaojam R, Aguan K, Khatua S (2017) Highly selective light-up Al3+ sensing by a coumarin based Schiff base probe: subsequent phosphate sensing DNA binding and live cell imaging. J Photochem Photobiol A 332:101–111. https://doi.org/10.1016/j.jphotochem.2016.08.019

    Article  CAS  Google Scholar 

  18. Das AK, Goswami S (2017) 2-Hydroxy-1-naphthaldehyde: a versatile building block for the development of sensors in supramolecular chemistry and molecular recognition. Sensors Actuators B Chem 245:1062–1125. https://doi.org/10.1016/j.snb.2017.01.068

    Article  CAS  Google Scholar 

  19. Liao Z, Liu Y, Han SF, Wang D, Zheng JQ, Zheng XJ, Jin LP (2017) A novel acylhydrazone-based derivative as dual-mode chemosensorfor Al3+, Zn2+ and Fe3+ and its applications in cell imaging. Sensors Actuators B Chem 244:914–921. https://doi.org/10.1016/j.snb.2017.01.074

    Article  CAS  Google Scholar 

  20. Mukherjee M, Sen B, Pal S, Maji A, Budhadev D, Chattopadhyay P (2016) Development of a cell permeable red-shifted CHEF-based chemosensor for Al3+ ion by controlling PET. Spectrochim Acta Part A Mol Biomol Spectrosc 157:11–16. https://doi.org/10.1016/j.saa.2015.11.032

    Article  CAS  Google Scholar 

  21. Azadbakht R, Talebi M, Karimi J, Golbedaghi R (2016) Synthesis and characterization of a new organic nanoparticle as fluorescent chemosensor for aluminum ions. Inorg Chim Acta 453:728–734. https://doi.org/10.1016/j.ica.2016.09.042

    Article  CAS  Google Scholar 

  22. Huerta-Aguilar CA, Raj P, Thangarasu P, Singh N (2016) Fluorescent organic nanoparticles (FONs) for selective recognition of Al3+: application to bioimaging for bacterial sample. RSC Adv 6:37944–37952. https://doi.org/10.1039/C6RA01231K

    Article  CAS  Google Scholar 

  23. Ghosh P, Banerjee P (2017) Small molecular probe as selective tritopic sensor of Al3+, F and TNP: fabrication of portable prototype for onsite detection of explosive TNP. Anal Chim Acta 965:111–122. https://doi.org/10.1016/j.aca.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  24. Goel R, Sharma S, Paul K, Luxami V (2017) Naphthalimide based chromofluorescent sensor and DNA intercalator: triggered by Hg2+/HSO4– cleavage reaction. Sensors Actuators B Chem 246: 776–782. https://doi.org/10.1016/j.snb.2017.02.090

    Article  CAS  Google Scholar 

  25. Kavitha R, Stalin T (2017) Dual emission and pH based naphthalimide derivative fluorescent sensor for the detection of Bi3+. Sensors Actuators B Chem 247:632–640. https://doi.org/10.1016/j.snb.2017.03.043

    Article  Google Scholar 

  26. Wang F, Xu Y, Aderinto SO, Peng H, Zhang H, Wu H (2017) A new highly effective fluorescent probe for Al3+ ions and its application in practical samples. J Photochem Photobiol A 332:273–282. https://doi.org/10.1016/j.jphotochem.2016.09.004

    Article  CAS  Google Scholar 

  27. Liu Y, Zhang J, Wang Y, Liu C, Zhang G, Liu W (2017) A rapid and naked-eye visible FRET ratiometric fluorescent chemosensor for sensitive detection of toxic BF3. Sensors Actuators B Chem 243:940–945. https://doi.org/10.1016/j.snb.2016.12.078

    Article  CAS  Google Scholar 

  28. Georgiev NI, Sakr AR, Bojinov VB (2015) Design and synthesis of a novel PET and ICT based 1,8-naphthalimideFRET bichromophore as a four-input Disabled–Enabled-OR logic gate. Sensors Actuators B Chem 221:625–634. https://doi.org/10.1016/j.snb.2015.07.009

    Article  CAS  Google Scholar 

  29. Zhang ZY, Chen YH, Xu DM, Yang L, Liu AF (2013) A new 1,8-naphthalimide-based colorimetric and “turn-on” fluorescent Hg2+ sensor. Spectrochim Acta A Mol Biomol Spectrosc 105:8–13. https://doi.org/10.1016/j.saa.2012.11.113

    Article  PubMed  Google Scholar 

  30. Benesi HA, Hildebrand J (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707. https://doi.org/10.1021/ja01176a030

    Article  CAS  Google Scholar 

  31. Kaushik R, Ghosh A, Jose DA (2016) Simple terpyridine based Cu(II)/Zn(II) complexes for the selective fluorescent detection of H2S in aqueous medium. J Lumin 171:112–117. https://doi.org/10.1016/j.jlumin.2015.10.005

    Article  CAS  Google Scholar 

  32. Das S, Dutta M, Das D (2013) Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects. Anal Methods 5:6262–6285. https://doi.org/10.1039/C3AY40982A

    Article  CAS  Google Scholar 

  33. Li CR, Liao ZC, Qin JC, Wang BD, Yang ZY (2015) Study on 2-acetylpyrazine(pyridine-2ʹ- acetyl)hydrazone as a fluorescent sensor for Al3+. J Lumin 168:330–333. https://doi.org/10.1016/j.jlumin.2015.07.055

    Article  Google Scholar 

  34. Tian X, Guo X, Yu F, Jia L (2016) An oxalamidoquinoline-based fluorescent sensor for selective detection of Zn2+ in solution and living cells and its logic gate behavior. Sensors Actuators B Chem 232:181–187. https://doi.org/10.1016/j.snb.2016.03.126

    Article  CAS  Google Scholar 

  35. Gupta N, Singhal D, Singh AK, Singh N, Singh UP (2017) A highly selective chromogenic sensor for Mn2+, turn-off fluorometric for Hg2+ ion, and turn-on fluorogenic sensor for F ion with the practical application. Spectrochim Acta A Mol Biomol Spectrosc 176:38–46. https://doi.org/10.1016/j.saa.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  36. Sarkar D, Ghosh P, Gharami S, Mondal TK, Murmu N (2017) A novel coumarin based molecular switch for the sequential detectionof Al3+and F: application in lung cancer live cell imaging andconstruction of logic gate. Sensors Actuators B Chem 242:338–346. https://doi.org/10.1016/j.snb.2016.11.059

    Article  CAS  Google Scholar 

  37. Hong M, Lu X, Chen Y, Xu D (2016) A novel rhodamine-based colorimetric and fluorescent sensor for Hg2+ in water matrix and living cell. Sensors Actuators B Chem 232:28–36. https://doi.org/10.1016/j.snb.2016.03.125

    Article  CAS  Google Scholar 

  38. Liu T, Wan X, Dong Y, Li W, Wu L, Pei H, Yao Y (2017) Facile synthesis of a water-soluble fluorescence sensor for Al3+ in aqueous solution and on paper substrate. Spectrochim Acta A Mol Biomol Spectrosc 173:625–629. https://doi.org/10.1016/j.saa.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  39. Kumawat LK, Kumar M, Bhatt P, Jha A, Guptaa VK, Sharma A (2016) Structure property studies revealed a new indoylfuranone based bifunctional chemosensor for Cu2+ and Al3+. Anal Methods 8:7369–7379. https://doi.org/10.1039/C6AY01786J

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (No. LBH-Q14023), the State Scholarship Fund of China Scholar Council (No. 201408230115) and the Scientific Research Fund of Heilongjiang Provincial Education Department (No. 12531033). We would like to thank Professor Zhendong Jin’s (The University of Iowa) instruction in writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Yong Xing.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 171 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, NN., Zeng, S., Li, MQ. et al. A Highly Selective Naphthalimide-Based Chemosensor: “Naked-Eye” Colorimetric and Fluorescent Turn-On Recognition of Al3+ and Its Application in Practical Samples, Test Paper and Logic Gate. J Fluoresc 28, 347–357 (2018). https://doi.org/10.1007/s10895-017-2197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2197-9

Keywords

Navigation