Skip to main content
Log in

Binding Studies of Isoxsuprine Hydrochloride to Calf Thymus DNA Using Multispectroscopic and Molecular Docking Techniques

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present work, the interaction of Isoxsuprine (ISX) with Calf thymus DNA (ct-DNA) under physiological conditions (Tris–HCl buffer of pH 7.4) was investigated by using electronic absorption, circular dichroism, viscosity, electrochemical studies, fluorescence techniques, salt effect studies and computational studies. Competitive fluorimetric studies with Hoechst 33258 have shown that ISX exhibit the ability to displace the DNA-bound Hoechst 33258, indicating that it binds to ct-DNA in strong competition with Hoechst 33258 for the minor groove binding. Furthermore, the resulting data showed that ISX cannot displace methylene blue or acridine orange, which are the common intercalator molecules. The viscosity of ct-DNA solution was almost unchanged on addition of ISX and circular dichroism (CD) spectra of ct-DNA showed small changes in the presence of ISX which is in agreement with groove binding mode of interaction. Thus all above studies showed that the ISX drug binds to ct-DNA in a groove binding mode.The salt-effect studies showed the non-electrostatic nature of binding of ISX to ct-DNA. Moreover, molecular docking results support the above experimental data and suggest that ISX prefers to bind on the minor groove of ct-DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Shahabadi N, Fili SM, Kheirdoosh F (2013) Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. J Photochem Photobiol B Biol 128:20–26

    Article  CAS  Google Scholar 

  2. Dogra S, Awasthi P, Nair M, Barthwal R (2013) Interaction of anticancer drug mitoxantrone with DNA hexamer sequence d-(CTCGAG)2 by absorption, fluorescence and circular dichroism spectroscopy. J Photochem Photobiol B Biol 123:48–54

    Article  CAS  Google Scholar 

  3. Charak S, Mehrotra R (2013) Investigation of idarubicin–DNA interaction: Spectroscopic and molecular docking study. Int J Biol Macromol 60:213–218

    Article  CAS  PubMed  Google Scholar 

  4. Gua T, Hasebe Y (2012) Novel amperometric assay for drug–DNA interaction based on an inhibitory effect on an electrocatalytic activity of DNA–Cu(II) complex. Biosens Bioelectron 33:222–227

    Article  Google Scholar 

  5. Williams AK, Dasilva SC, Bhatta A, Rawal B, Liu M, Korobkova EA (2012) Determination of the drug-DNA binding modes using fluorescence-based assays. Anal Biochem 422:66–73

    Article  CAS  PubMed  Google Scholar 

  6. Balakrishnan S, Jaldappagari S (2013) Binding of an anticancer Rutaceae plant flavonoid glycoside with calf thymus DNA: biophysical and electrochemical studies. J Lumin 142:17–22

    Article  CAS  Google Scholar 

  7. Patel MN, Dosi PA, Bhatt BS (2012) Interaction of palladium(II) coordination compounds with calf thymus DNA and their antibacterial activity. Inorg Chem Commun 21:61–64

    Article  CAS  Google Scholar 

  8. Singh MP, Joseph T, Kumar S, Bathini Y, Lown JW (1992) Synthesis and sequence-specific DNA binding of a topoisomerase inhibitory analog of Hoechst 33258 designed for altered base and sequence recognition. Chem Res Toxicol 5:597–607

    Article  CAS  PubMed  Google Scholar 

  9. Sparks J, Scholz C (2009) Evaluation of a cationic poly(β-hydroxyalkanoate) as a plasmid DNA delivery system. Biomacromolecules 10:1715–1719

    Article  CAS  PubMed  Google Scholar 

  10. Lown JW (1998) Anticancer Drug Des 3:25–40

    Google Scholar 

  11. Reynolds JEF (ed) (1996) Martindale: the extra pharmacopoeia, 31st edn. The Pharmaceutical Press, London

    Google Scholar 

  12. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  13. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  14. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Chem Phys 7:3297–3305

    CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill B, Johnson PMW, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian software. Gaussian Inc, Pittsburgh

    Google Scholar 

  16. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (2007) Autodock version 4.0.1. The Scripps Research Institute, La Jolla

    Google Scholar 

  17. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  18. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Auto dock 4 and auto dock tools 4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. BioChemistry 26:6392–6396

    Article  CAS  PubMed  Google Scholar 

  20. Jalali F, Rasaee G (2015) Electrochemical, spectroscopic, and theoretical studies on the interaction between azathioprine and DNA. Int J Biol Macromol 81:427–434

    Article  CAS  PubMed  Google Scholar 

  21. Wu Y, Yang G (2010) Interaction between garcigenrin and DNA by spectrophotometry and fluorescence spectroscopy. Spectrosc Lett 43:28–35

    Article  CAS  Google Scholar 

  22. Tao M, Zhang G, Pan J, Xiong C (2016) Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA. Spectrochim Acta A 155:28–37

    Article  CAS  Google Scholar 

  23. Li JF, Dong C (2009) Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method. Spectrochim Acta A 71:1938–1943

    Article  CAS  Google Scholar 

  24. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. BioChemistry 20:3096–3102

    Article  CAS  PubMed  Google Scholar 

  25. Yuan JL, Liu H, Kang X, Lv Z, Zou GL (2008) Characteristics of the isomeric flavonoids apigenin and genistein binding to hemoglobin by spectroscopic methods. J Mol Struct 891:333–339

    Article  CAS  Google Scholar 

  26. Kashanian S, Ezzati Nazhad Dolatabadi J (2009) In vitro study of calf thymus DNA interaction with butylated hydroxyanisole. DNA Cell Biol 28:535–540

    Article  CAS  PubMed  Google Scholar 

  27. Zhang GW, Wang LH, Zhou XY, Li Y, Gong DM (2014) Binding characteristics of sodium saccharin with calf thymus DNA in vitro. J Agric Food Chem 62:991–1000

    Article  CAS  PubMed  Google Scholar 

  28. Kakkar R, Garg R (2002) Theoretical study of tautomeric structures and fluorescence spectra of Hoechst 33258. J Mol Struct THOECHEM 579:109–113

    Article  CAS  Google Scholar 

  29. Guan Y, Zhou W, Yao X, Zhao M, Li Y (2006) Determination of nucleic acids based on the fluorescence quenching of Hoechst 33258 at pH 4.5. Anal Chim Acta 570:21–28

    Article  CAS  Google Scholar 

  30. Rasaee G, Jalali F (2015) Electrochemical, spectroscopic, and theoretical studies on the interaction between azathioprine and DNA. Int J Biol Macromol 81:427–434

    Article  PubMed  Google Scholar 

  31. Bi S, Qiao C, Song D, Tian Y, Gao D, Sun Y, Zhang H (2006) Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe. Sensors Actuators B 119:199–208

    Article  CAS  Google Scholar 

  32. Rodger A (1997) Circular dichroism and linear dichroism. Wiley Online Library

  33. Ivanov V, Minchenkova L, Schyolkina A, Poletayev A (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12:89–110

    Article  CAS  PubMed  Google Scholar 

  34. Lincoln P, Tuite E, Norden B (1997) Short-circuiting the molecular wire: cooperative binding of ∆-[Ru(phen)2dppz]2+ and ∆-[Rh(phi)2bipy]3+ to DNA. J Am Chem Soc 119:1454–1455

    Article  CAS  Google Scholar 

  35. Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M (2015) Studying non-covalent drug–DNA interactions. Arch Biochem Biophys 576:49–60

    Article  PubMed  Google Scholar 

  36. Li FH, Zhao GH, Wu HX, Lin H, Wu XX, Zhu SR, Lin HK (2006) Synthesis, characterization and biological activity of lanthanum(III) complexes containing 2-methylene–1,10-phenanthroline units bridged by aliphatic diamines. J Inorg Biochem 100:36–43

    Article  CAS  PubMed  Google Scholar 

  37. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither ∆- nor ʌ-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31:9319–9324

    Article  CAS  PubMed  Google Scholar 

  38. Lincoln P, Norden B (1998) DNA binding geometries of ruthenium(II) complexes with 1,10-phenanthroline and 2,2′-bipyridine ligands studied with linear dichroism spectroscopy. Borderline cases of intercalation. J Phys Chem B 102:9583–9594

    Article  CAS  Google Scholar 

  39. Bielawski K, Bielawska A, Anchim T, Wolczynski S (2005) Synthesis, DNA binding, topoisomerase inhibition and cytotoxic properties of 2-chloroethylnitrosourea derivatives of hoechst 33258. Biol Pharm Bull 28:1004–1009

    Article  CAS  PubMed  Google Scholar 

  40. Zhou X, Zhang G, Pan J (2015) Groove binding interaction between daphnetin and calf thymus DNA. Int J Biol Macromol 74:185–194

    Article  CAS  PubMed  Google Scholar 

  41. Fei Y, Lu G, Fan G, Wu Y (2009) Spectroscopic studies on the binding of a new quinolone antibacterial agent: sinafloxacin to DNA. Anal Sci 25:1333–1338

    Article  CAS  PubMed  Google Scholar 

  42. Bard AJ, Faulkner LR (2001) Electrochemical methods, second edn. Wiley, New York, p 36

    Google Scholar 

  43. Feng Q, Li NQ, Jiang YY (1997) Electrochemical studies of porphyrin interacting with DNA and determination of DNA. Anal Chim Acta 344:97–104

    Article  CAS  Google Scholar 

  44. El-Sonbati AZ, Mohamed GG, El-Bindary AA, Hassan WMI, Diab MA, Morgan SM, Elkholy AK (2015) Supramolecular structure, molecular docking and thermal properties of azo dye complexes. J Mol Liq 212:487–502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from Bu-Ali Sina University Research Center is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Salehzadeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehzadeh, S., Hajibabaei, F., Moghadam, N.H. et al. Binding Studies of Isoxsuprine Hydrochloride to Calf Thymus DNA Using Multispectroscopic and Molecular Docking Techniques. J Fluoresc 28, 195–206 (2018). https://doi.org/10.1007/s10895-017-2182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2182-3

Keywords

Navigation