Skip to main content

Advertisement

Log in

Design and Fabrication a Gold Nanoparticle-DNA Based Nanobiosensor for Detection of microRNA Involved in Alzheimer's Disease

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

MicroRNAs are small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. Regards to important role of these biomolecules in human disease progress, to produce sensitive, simple and cost-effective assays for microRNAs are in urgent demand. miR-137 in Alzheimer’s patients has demonstrated its potential as non-invasive biomarkers in blood for Alzheimer’s disease diagnosis and prognosis. This paper describes a novel, sensitive and specific microRNA assay based on Colorimetric detection of gold nanoparticles and hybridization chain reaction amplification (HCR). The new strategy eliminates the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment. The detection process is visible with the naked eyes and detection limit for this method is 0.25nM which is less than or at least comparable with the previous methods based on colorimetric of AuNPs. The important features of this method are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. In conclusion, the simple and fast nanobiosensor can clinically be used for the early detection of Alzheimer’s disease by direct detection of the plasma miR-137 in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  PubMed  Google Scholar 

  2. Rao AT, Degnan AJ, Levy LM (2014) Genetics of Alzheimer disease. AJNR Am J Neuroradiol 35(3):457–458

    Article  CAS  PubMed  Google Scholar 

  3. Hizir MS, Balcioglu M, Rana M, Robertson NM, Yigit MVV (2014) Simultaneous detection of circulating oncomiRs from body fluids for prostate cancer staging using nanographene oxide. ACS Appl Mater Interfaces 6(17):14772–14778

    CAS  PubMed  Google Scholar 

  4. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  5. Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Naderi-Manesh H (2016) An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron 77:99–106

    Article  CAS  PubMed  Google Scholar 

  6. Delay C, Mandemakers W, Hébert SS (2012) MicroRNAs in Alzheimer’s disease. Neurobiol Dis 46:285–290

    Article  CAS  PubMed  Google Scholar 

  7. Grasso M, Piscopo P, Confaloni A, Denti MA (2014) Circulating miRNAs as biomarkers for neurodegenerative disorder. Molecules 19(5):6891–6910

    Article  PubMed  Google Scholar 

  8. Ebert MS, Sharp PA (2012) Roles for MicroRNAs in conferring robustness to biological processes. Cell 149(3):515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dorval V, Nelson PT, Hébert SS (2013) Circulating microRNAs in Alzheimer’s disease: the search for novel biomarkers. Front Mol Neurosci 6:24

    PubMed  PubMed Central  Google Scholar 

  10. Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci 31(41):14820–14830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geekiyanage H, Jicha GA, Nelson PT, Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235(2):491–496

    Article  CAS  PubMed  Google Scholar 

  12. Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS ONE 8(7), e69807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li J, Yao B, Huang H, Wang Z, Sun CH, Fan Y, Chang Q, Li SL, Wang X, Xi JZ (2009) Real-time polymerase chain reaction MicroRNA detection based on enzymatic stem-loop probes ligation. Anal Chem 81(13):5446–5451

    Article  CAS  PubMed  Google Scholar 

  14. Yu CY, Yin BC, Ye BC (2013) A universal real-time PCR assay for rapid quantification of microRNAs via the enhancement of base-stacking hybridization. Chem Commun 49:8247–8249

    Article  CAS  Google Scholar 

  15. Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3(2):321–329

    Article  CAS  PubMed  Google Scholar 

  16. Várallyay E, Burgyán J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3(2):190–196

    Article  PubMed  Google Scholar 

  17. EunKim J, Choi J, Colas M, HaKim D, Lee H (2016) Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens Bioelectron 80:543–559

    Article  Google Scholar 

  18. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107(24):10837–10841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li J, Fu H-E, Wu L-J, Zheng A-X, Chen G-N, Yang H-H (2012) General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Anal Chem 84(12):5309–5315

    Article  CAS  PubMed  Google Scholar 

  20. Li RD, Yin BC, Ye BC (2016) Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Biosens Bioelectron 86:1011–1016

    Article  CAS  PubMed  Google Scholar 

  21. Xia N, Zhang L, Wang G, Feng Q, Liu L (2013) Label free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual amplification of gold nanoparticles. Biosens Bioelectron 47:461–466

    Article  CAS  PubMed  Google Scholar 

  22. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101(43):15275–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, Liu J, He L (2013) Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem 85(16):7689–7695

    Article  CAS  PubMed  Google Scholar 

  24. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  25. Volkert AA, Subramaniam V, Haes AJ (2011) Implications of citrate concentrationduring the seeded growth synthesis of gold nanoparticles. Chem Commun 47:478–480

    Article  CAS  Google Scholar 

  26. Rahaie M, Ghai R, Babic B, Dimitrov K (2009) Synthesis and characterization of DNA-based micro- and nanodumbbell structures. J Bionanosci 3:73–79

    Article  CAS  Google Scholar 

  27. Lyubchenko YL, Shlyakhtenko LS, Ando T (2011) Imaging of nucleic acids with atomic force microscopy. Methods 54(2):274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhilei G, Meihua L, Ping W, Hao P, Juan Y, Jiye S, Qing H, Dannong H, Chunhai F, Xiaolei Z (2014) Hybridization chain reaction amplification of MicroRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem 86(4):2124–2130

    Article  Google Scholar 

  29. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101(39):14036–14039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng H, Zhang X, Kumar A, Zou G (2013) Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of Bacillus anthracis. Chem Commun 49(1):51–53

    Article  CAS  Google Scholar 

  31. Seow N, Tan YN, Yung L-YL (2014) Gold nanoparticle–dynamic light scattering tandem for the rapid and quantitative detection of the let7 MicroRNA family. Part Part Syst Charact 31(12):1260–1268

    Article  CAS  Google Scholar 

  32. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would to thank the University of Tehran for providing financial and instrumental supports in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Rahaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delkhahi, S., Rahaie, M. & Rahimi, F. Design and Fabrication a Gold Nanoparticle-DNA Based Nanobiosensor for Detection of microRNA Involved in Alzheimer's Disease. J Fluoresc 27, 603–610 (2017). https://doi.org/10.1007/s10895-016-1988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1988-8

Keywords

Navigation