Skip to main content
Log in

Cerium(III) Ion Sensing Based on Graphene Quantum Dots Fluorescent Turn-Off

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work, graphene quantum dots (GQDs) was synthesized through hydrothermal method and used as a photoluminescent bulk nano-chemosensor for detection of Ce3+ ion in the aqueous solution. The synthesized GQD was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Visible absorption and fluorescence emission spectroscopy. The sheet diameters of the synthesized GQDs were mainly distributed in the range of 15–20 nm. The interactions of GQDs with common cations and lanthanide ions were studied by fluorescence spectroscopy. Among the tested cations, Ce3+ ions was able to quench the fluorescence emission intensity of the GQD selectively. This quenching can be attributed to a redox mechanism between Ce3+ ion on the GQDs surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments J Am Chem Soc 126:12736–12737

    CAS  PubMed  Google Scholar 

  2. Ju SY, Kopcha WP, Papadimitrakopoulos F (2009) Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization Science 323:1319–1323

    CAS  PubMed  Google Scholar 

  3. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid Carbon 50:4738–4743

    CAS  Google Scholar 

  4. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    Article  CAS  Google Scholar 

  5. Hong GS, Diao SO, Antaris AL, Dai HJ (2015) Carbon nanomaterials for biological imaging and Nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  PubMed  Google Scholar 

  6. Durána MG, Contento AM, Ríos Á (2015) Sensoring strategies using quantum dots: a critical view. Current Org Chem 19:1134–1149

    Article  Google Scholar 

  7. Peng J, Gao W, Kumar Gupta B, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Antony Vithayathil S, Abraham Kaipparettu B, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  PubMed  Google Scholar 

  8. Hosseini M, Khabbaz H, Shiralizadeh Dezfoli A, Ganjali MR, Dadmehr M (2015) Selective recognition of glutamate based on fluorescence enhancement of graphene quantum dot. Spectrochim Acta A 136:1962–1966

    Article  CAS  Google Scholar 

  9. Wang D, Wang L, Dong X, Shi Z, Jin J (2012) Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon 50:2147–2154

    Article  CAS  Google Scholar 

  10. Wang F, Gu Z, Lei W, Wang W, Xia X, Hao Q (2014) Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sensors Actuators B Chem 190:516–522

    Article  CAS  Google Scholar 

  11. Dong Y, Li G, Zhou N, Wang R, Chi Y, Chen G (2012) Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem 84:8378–8382

    Article  CAS  PubMed  Google Scholar 

  12. Benítez-Martínez S, Valcárcel M (2014) Graphene quantum dots as sensor for phenols in olive oil. Sensors Actuators B Chem 197:350–357

    Article  Google Scholar 

  13. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    Article  CAS  PubMed  Google Scholar 

  14. Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442

    Article  CAS  Google Scholar 

  15. Gupta VK, Singh AK, Gupta B (2006) A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N,N′-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine. Anal Chim Acta 575:198–204

    Article  CAS  PubMed  Google Scholar 

  16. Emsley J (2011) Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, ISBN 978–0–19-960563-7, pp: 120–125

  17. Patnaik P (2003) Handbook of Inorganic Chemical Compounds, McGraw-Hill, ISBN 0–07–049439-8, pp 199–200

  18. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  PubMed  Google Scholar 

  19. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

    Article  PubMed  Google Scholar 

  20. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX (2013) Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for / imaging and sensing. J Mater Chem C 1:4676–4684

    Article  CAS  Google Scholar 

  21. Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Physical Chem 65:229–235

    Article  CAS  Google Scholar 

  22. Gu J, Hu MJ, Guo QQ, Ding ZF, Suna XL, Yang J (2014) High-yield synthesis of graphene quantum dots with strong green photoluminescence. RSC Adv 4:510141

    Google Scholar 

  23. Talapin DV, Lee J, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal Nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  CAS  PubMed  Google Scholar 

  24. Gowda RR, Chakraborty D (2011) Ceric ammonium nitrate catalyzed oxidation of aldehydes and alcohols. Chinese J Chem 29:2379–2384

    Article  CAS  Google Scholar 

  25. Hosseini M, Gupta VK, Ganjali MR, Rafiei-Sarmazdeh Z, Faridbod F, Goldooz H, Badiei AR, Norouzi P (2012) A novel dichromatesensitive fluorescent nano-chemosensor using new functionalized SBA-15. Anal Chim Acta 715:80–85

    Article  CAS  PubMed  Google Scholar 

  26. Ganjali MR, Gupta VK, Hosseini M, Rafiei-Sarmazdeh Z, Faridbod F, Goldooz H, Badiei AR, Norouzi P (2012) A novel permanganatesensitive fluorescent nano-chemosensor assembled with a new 8-hydroxyquinoline-functionalized SBA-15. Talanta 88:684–688

    Article  CAS  PubMed  Google Scholar 

  27. Hosseini M, Ganjali MR, Veismohammadi B, Faridbod F, Norouzi P, Abkenar SD (2010) Novel selective optode membrane for terbium ion based on fluorescence quenching of the 2-(5-(dimethylamino)naphthalen-1-ylsulfonyl)-N-henylhydrazinecarbothioamid. Sensors Actuators B Chem 147:23–30

    Article  CAS  Google Scholar 

  28. Hosseini M, Ganjali MR, Veismohammadi B, Faridbod F, Abkenar SD, Norouzi P (2010) Determination of terbium in phosphate rock by Tb3 + −selective fluorimetric optode based on dansyl derivative as a neutral fluorogenic ionophore. Anal Chim Acta 664:172–177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the research council of University of Tehran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnoush Faridbod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehnia, F., Faridbod, F., Dezfuli, A.S. et al. Cerium(III) Ion Sensing Based on Graphene Quantum Dots Fluorescent Turn-Off. J Fluoresc 27, 331–338 (2017). https://doi.org/10.1007/s10895-016-1962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1962-5

Keywords

Navigation