Skip to main content
Log in

Green Synthetic Approach for Synthesis of Fluorescent Carbon Dots for Lisinopril Drug Delivery System and their Confirmations in the Cells

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work, highly luminescent carbon dots (CDs) were synthesized by the hydrothermal method at 170 °C for 12 h using pasteurized milk as a carbon source. The prepared CDs exhibited bright blue fluorescence under UV light illumination at 365 nm. The CDs show fluorescence life time of ~4.89 ns at excitation wavelength of 370 nm. The effect of different solvents on the fluorescence property of CDs was also investigated. The lisinopril (Lis)-loaded CDs were fabricated by self-assembly of lisinopril on the surfaces of CDs, which were characterized by UV-visible and FT-IR spectroscopic techniques. The controlled release of lisinopril from the Lis-CDs was realized at pH values of 5.2, 6.2 and 7.4, respectively. The results of the cytotoxicity and confocal laser scanning microscopic images indicate that the Lis-CDs were successfully uptaken by HeLa cells without apparent cytotoxicity. The synthesized CDs show great potential as drug vehicles with good biocompatibility, sustained release of lisinopril from CDs, indicating that the CDs can act as a promising drug delivery system for therapeutic delivery and/or bioimaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotech. Biol Med 8:147–166

    CAS  Google Scholar 

  2. Howes P, Green M, Bowers A, Parker D, Varma G, Kallumadil M, Hughes M, Warley A, Brain A, Botnar R (2010) Magnetic conjugated polymer nanoparticles as bimodal imaging agents. J Am Chem Soc 132:9833–9842

    Article  CAS  PubMed  Google Scholar 

  3. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2010) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037

    Article  Google Scholar 

  4. Kim J, Cao L, Shvartsman D, Silva EA, Mooney DJ (2011) Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 11:694–700

    Article  CAS  PubMed  Google Scholar 

  5. Cheng Z, Zaki AA, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  7. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  CAS  PubMed  Google Scholar 

  8. Yang Z, Chen CY, Liu CW, Chang HT (2010) Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chem Commun 46:5485

    Article  CAS  Google Scholar 

  9. Yang ST, Yang ST, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu JH, Liu Y, Chen M, Huang Y, Sun YP (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113:18110–18114

    Article  CAS  Google Scholar 

  10. Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84:6220–6224

    Article  CAS  PubMed  Google Scholar 

  11. Zhou J, Sheng Z, Han H, Zou M, Li C (2012) Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 66:222–224

    Article  CAS  Google Scholar 

  12. Dubey P, Tripathi KM, Sonkar SK (2014) Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Adv 4:5838–5844

    Article  CAS  Google Scholar 

  13. Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y (2014) Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron 60:292–298

    Article  CAS  PubMed  Google Scholar 

  14. Xu J, Zhou Y, Liu S, Dong M, Huang C (2014) Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum(III) ions in lake water. Anal Methods 6:2086–2092

    Article  CAS  Google Scholar 

  15. Mehta VN, Jha S, Singhal RK, Kailasa SK (2014) Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J Chem 38:6152–6160

    Article  CAS  Google Scholar 

  16. Wang L, Zhou HS (2014) Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem 86:8902–8905

    Article  CAS  PubMed  Google Scholar 

  17. Huang H, Lv JJ, Zhou DL, Bao N, Xu Y, Wang AJ, Feng JJ (2013) One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv 3:21691–21696

    Article  CAS  Google Scholar 

  18. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837

    Article  CAS  Google Scholar 

  19. De B, Karak N (2013) A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv 3:8286–8290

    Article  CAS  Google Scholar 

  20. Yue X, Jing TC, Hong H, Qun SC, Kun ZY, Feng YQ, Jun WA (2014) Green synthesis of fluorescent carbon quantum dots for detection of Hg2+. Chin J Anal Chem 42:1252–1258

    Article  Google Scholar 

  21. Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C 38:20–27

    Article  CAS  Google Scholar 

  22. Liu Y, Zhao Y, Zhang Y (2014) One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensors Actuators B Chem 196:647–652

    Article  CAS  Google Scholar 

  23. Park SY, Lee HU, Park ES, Lee SC, Lee JW, Jeong SW, Kim CH, Lee YC, Huh YS, Lee J (2004) Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces 6:3365–3370

    Article  Google Scholar 

  24. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca M, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  PubMed  Google Scholar 

  25. Zhou L, Li Z, Liu Z, Ren J, Qu X (2013) Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging. Langmuir 29:6396–6403

    Article  CAS  PubMed  Google Scholar 

  26. Mewada A, Pandey S, Thakur M, Jadhav D, Sharon M (2014) Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J Mater Chem B 2:698–705

    Article  CAS  Google Scholar 

  27. Thakur M, Pandey S, Mewada A, Patil V, Khade M, Goshi E, Sharon M (2014) Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J Drug Del Article ID 282193

  28. Hsu PC, Chen PC, CM O, Changand HY, Chang HT (2013) Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J Mater Chem B 1:1774–1781

    Article  CAS  Google Scholar 

  29. Lai CW, Hsiao YH, Peng YK, Chou PT (2012) Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J Mater Chem 22:14403–14409

    Article  CAS  Google Scholar 

  30. Lee HU, Park SY, Park ES, Son B, Lee SC, Lee JW, Lee YC, Kang KS, Kim MI, Park HG, Choi S, Huh YS, Lee SY, Lee KB, YK O, Lee J (2014) Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci Rep 4:4665

    PubMed  PubMed Central  Google Scholar 

  31. Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng H (2013) Hollow luminescent carbon dots for drug delivery. Carbon 59:192–199

    Article  CAS  Google Scholar 

  32. Langtry HD, Markham A (1997) Lisinopril. A review of its pharmacology and clinical efficacy in elderly patients. Drugs Aging 10:131–166

    Article  CAS  PubMed  Google Scholar 

  33. Simpson K, Jarvis B (2000) Characterization of a novel impurity in bulk drug of lisinopril by multidimensional NMR technique. Drugs 59:1149–1167

    Article  CAS  PubMed  Google Scholar 

  34. Bussien JP, Waeber B, Nussberger J, Gomez JH, Brunner HR (1985) Once-daily lisinopril in hypertensive patients: effect on blood pressure and the renin-angiotensin system. Curr Ther Res 37:342–351

    Google Scholar 

  35. Semwal R, Semwal RB, Semwal DK (2014) A gastroretentive drug delivery system of lisinopril imbibed on isabgol- husk. Curr Drug Deliv 11:371–379

    Article  CAS  PubMed  Google Scholar 

  36. Jagdale SC, Suryawanshi VM, Pandya SV, Kuchekar BS, Chabukswar AR (2014) Development of press-coated, floating-pulsatile drug delivery of lisinopril. Sci Pharm 82:423–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simpson K, Jarvis B (2000) Lisinopril: a review of its use in congestive heart failure. Drugs 59:1149–1167

    Article  CAS  PubMed  Google Scholar 

  38. El Sharkawi FZ, El Shemy HA, Khaled H (2013) Anticancer activity of some commercial antihypertensive drugs by Neutral Red assay. Life Sci J 10:609–613

    Google Scholar 

  39. Latha GS, Prasad SBC, Rao CSVR (2011) In vitro anti-cancer activities of few antihypertensive agents against carcinoma of scalp by MTT assay. J Chem Bio Phy Sci Sec B 1:299–303

    Google Scholar 

  40. Babu PA, Latha GS, Prasad SBC, Rao CSVR (2011) In vitro anti-cancer activities of few anti-hypertensive agents against carcinoma of cervix by MTT assay. J Pharma Research Reviews 1:1–3

    Google Scholar 

  41. Guo X, Meng Q, Liu Q, Wang C, Mao Q, Sun H, Peng J, Kaku T, Liu K (2012) Peptide cotransporter 1 in intestine and organic anion transporters in kidney are targets of interaction between JBP485 and lisinopril in rats. Drug Metab Pharmacokinet 27:232–241

    Article  CAS  PubMed  Google Scholar 

  42. Sadhukhan R, Sen GC, Ramchandran R, Sen I (1998) The distal ectodomain of angiotensin-converting enzyme regulates its cleavage-secretion from the cell surface. Proc Natl Acad Sci U S A 95:138–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Olteanu AA, Arama CC, Bleotu C, Lupuleasa D, Monciu CM (2015) Investigation of cyclodextrin based nanosponges complexes with angiotensin I converting enzyme inhibitors (Enalapril, captopril, cilazapril). Farmacia 63:492–503

    CAS  Google Scholar 

  44. Chowdhuri AR, Tripathy S, Haldar C, Roy S, Sahu SK (2015) Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J Mater Chem B 3:9122–9131

    Article  Google Scholar 

  45. Wang D, Wang X, Guo Y, Liu W, Qin W (2014) Luminescent properties of milk carbon dots and their Sulphur and nitrogen doped analogues. RSC Adv 4:51658–51665

    Article  CAS  Google Scholar 

  46. Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, Wang E (2011) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6:400–409

    Article  PubMed  Google Scholar 

  47. Chen M, Wang W, Wu X (2014) One-pot green synthesis of water-soluble carbon nanodots with multicolor photoluminescence from polyethylene glycol. J Mater Chem B 2:3937–3945

    Article  CAS  Google Scholar 

  48. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541

    Article  CAS  Google Scholar 

  49. Li XY, Wang HQ, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N (2011) Chem Commun 47:932–934

    Article  Google Scholar 

  50. Leis J, Perkson A, Arulepp M, Kaarik M, Svensson G (2001) Carbon nanostructures produced by chlorinating aluminium carbide. Carbon 39:2043–2048

    Article  CAS  Google Scholar 

  51. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957

    Article  CAS  Google Scholar 

  52. Kozak O, Datta KKR, Greplova M, Ranc V, Kaslik J, Zboril R (2013) Surfactant-derived amphiphilic carbon dots with tunable photoluminescence. J Phys Chem C 117:24991–24996

    Article  CAS  Google Scholar 

  53. Kityk AV (2012) Absorption and fluorescence spectra of heterocyclic isomers from long-range-corrected density functional theory in polarizable continuum approach. J Phys Chem A 116:3048–3055

    Article  CAS  PubMed  Google Scholar 

  54. Gasiorski P, Danel KS, Matusiewicz M, Uchacz T, Kuźnik W, Piatek Ł, Kityk AV (2012) DFT/TDDFT study on the electronic structure and spectral properties in annulated analogue of phenyl heteroazulene derivative. Mater Chem Phys 132:330–338

    Article  CAS  Google Scholar 

  55. Gasiorski P, Danel KS, Matusiewicz M, Uchacz T, Kuźnik W, Kityk AV (2012) DFT/TDDFT study on the electronic structure and spectral properties of diphenyl azafluoranthene derivative. J Fluorescence 22:81–91

    Article  CAS  Google Scholar 

  56. Bourlinos AB, Zboril R, Petr J, Bakandritsos A, Krysmann M, Giannelis EP (2012) Luminescent surface quaternized carbon dots. Chem Mater 24:6–8

    Article  CAS  Google Scholar 

  57. Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490

    Article  CAS  Google Scholar 

  58. Wang Y, Li QY, Liu XB, Zhang CY, ZM W, Guo XD (2015) Mesoscale simulations and experimental studies of pH-sensitive micelles for controlled drug delivery. ACS Appl Mater Interfaces 7:25592

    Article  CAS  PubMed  Google Scholar 

  59. Ding X, Liu Y, Li J, Luo Z, Hu Y, Zhang B, Liu J, Zhou J, Cai K (2014) Hydrazone-bearing PMMA-functionalized magnetic nanocubes as pH-responsive drug carriers for remotely targeted cancer therapy in vitro and in vivo. ACS Appl Mater Interfaces 6:7395

    Article  CAS  PubMed  Google Scholar 

  60. Pandey S, Oza G, Mewada A, Shah R, Thakur M, Sharon M (2013) Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers. J Mater Chem B 1:1361–1370

    Article  CAS  Google Scholar 

  61. Yang G, Gai S, Qu F, Yang P (2013) SiO2@YBO3:Eu3+ hollow mesoporous spheres for drug delivery vehicle. ACS Appl Mater Interfaces 5:5788

    Article  CAS  PubMed  Google Scholar 

  62. Li N, Liang X, Wang L, Li Z, Li P, Zhu Y, Song J (2012) Biodistribution study of carbogenic dots in cells and in vivo for optical imaging. J Nanopart Res 14:1177–1185

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the Director, SVNIT, and M.H.R.D., Government of India, for the financial support. We thank Department of Science and Technology (Ref. No. SR/FT/CS-54/2010), S. V. National Institute of Technology (Ref. No: Dean(R&C)/1503/2013-2014), Surat and Board of Research in Nuclear Science (Ref. No: 37(2) 14/07/2015/BRNS/10401) for financial support to this work. Special thanks to National Centre for Cell Science (NCCS), Pune for providing HeLa cells. We thank the concerned reviewers for their valuable suggestions and comments to improve the strength of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Kailasa.

Electronic supplementary material

ESM 1

(PPT 479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, V.N., Chettiar, S.S., Bhamore, J.R. et al. Green Synthetic Approach for Synthesis of Fluorescent Carbon Dots for Lisinopril Drug Delivery System and their Confirmations in the Cells. J Fluoresc 27, 111–124 (2017). https://doi.org/10.1007/s10895-016-1939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1939-4

Keywords

Navigation