Skip to main content
Log in

A Novel Technique of Synthesis of Highly Fluorescent Carbon Nanoparticles from Broth Constituent and In-vivo Bioimaging of C. elegans

  • FLUORESCENCE NEWS ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Here we have demonstrated a novel single step technique of synthesis of highly fluorescent carbon nanoparticles (CNPs) from broth constituent and in vivo bioimaging of Caenorhabditis elegans (C. elegans) with the synthesized CNPs has been presented. The synthesized CNPs has been characterized by the UV-visible (UV-Vis) absorption spectroscopy, transmission electron microscopy (TEM) and Raman studies. The sp 2 cluster size of the synthesized samples has been determined from the measured Raman spectra by fitting it with the theoretical skew Lorentzian (Breit-Wigner- Fano (BWF)) line shape. The synthesised materials are showing excitation wavelength dependent tunable photoluminescence (PL) emission characteristics with a high quantum yield (QY) of 3 % at a very low concentration of CNPs. A remarkable increase in the intensity of PL emission from 16 % to 39 % in C. elegans has also been observed when the feeding concentration of CNPs to C. elegans is increased from 0.025 % to 0.1 % (w/v). The non-toxicity and water solubility of the synthesized material makes it ideal candidate for bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iijima S, Ajayan PM, Ichihashi T (1992) Growth model for carbon nanotubes. Phys Rev Lett 69:3100–3103

    Article  CAS  PubMed  Google Scholar 

  2. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Megiani MJ, Harruff BA, Wang X, Wang HF, Luo PG, Kose ME, Chen B, Veca LM, Xie XY (2006) Quantum sized carbon dot for bright and colourful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  PubMed  Google Scholar 

  3. Xu X, Ray R, Gu Y, Polehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoresis analysis and purification of fluorescent single-walled carbon nano tube fragments. J Am Chem Soc 128:12736–12737

    Article  Google Scholar 

  4. Gokus T, Nair RR, Bonetti A, Bohmler M, Lombardo A, Novoselov KS, Geim AK, Ferrari AC, Hartchuh A (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3:3963–3968

    Article  CAS  PubMed  Google Scholar 

  5. Rahy A, Zhou C, Zheng J, Park SY, Kim MJ, Jang I, Cho SJ, Yang DJ (2012) Photoluminescent carbon nanoparticles produced by confined combustion of aromatic compound. Carbon 50:1298–1308

    Article  CAS  Google Scholar 

  6. Sadhanla HK, Nanda KK (2016) Boron-doped carbon nanoparticles: size independent color tenability from red to blue and bioimaging application. Carbon 96:166–173

    Article  Google Scholar 

  7. Tong G, Wang J, Wang R, Guo X, He L, Qiu F, Wang G, Zhu B, Zhu X, Liu T (2015) Amorphous carbon dots with high two-photon fluorescent for cellular imaging passivated by hyperbranched poly (amino amine). J Mater Chem B 3:700–706

    Article  CAS  Google Scholar 

  8. Yang Y, Cui J, Zheng M, Hu C, Xiao Y, Wang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382

    Article  CAS  Google Scholar 

  9. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 133:18546–18551

    Article  Google Scholar 

  10. Sahu S, Behera B, Maity TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837

    Article  CAS  Google Scholar 

  11. Kasibabu BSB, D’souza SL, Jha S, Kailas SK (2015) Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from papaya juice. J Flouresc 25:803–810

    Article  CAS  Google Scholar 

  12. Chandra S, Das P, Bag S, Laha D, Pramanik P (2011) Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 3:1533–1540

    Article  CAS  PubMed  Google Scholar 

  13. Zheng Y, Yang D, Wu X, Yan H, Zhao Y, Feng B, Duan K, Weng J, Wang J (2015) A facile approach for synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC Adv 5:90245–90254

    Article  CAS  Google Scholar 

  14. Wang J, Ng YH, Lim YF, Ho GW (2014) Vegetable extracted carbon dots and their nano composites for enhanced photo-catalytic H2 production. RSC Adv 4:44117–44123

    Article  CAS  Google Scholar 

  15. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2014) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nano dots and polymer dots): current state and future perspective Nano Res 8: 355–381

  16. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 3:4015–4039

    Article  Google Scholar 

  17. Riggs JE, Guo Z, Caroll DL, Sun YP (2000) Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc 122:5879–5880

    Article  CAS  Google Scholar 

  18. Mochalin VN, Gogotsi Y (2009) Wet chemistry route hydrophobic blue fluorescent nanodiamonds. 131:4594–4595

  19. Yang ZC, Li X, Wang J (2011) Wang (2011) intrinsically fluorescent nitrogen containing carbon nano particles synthesized by a hydrothermal process. Carbon 49:5207–5212

    Article  CAS  Google Scholar 

  20. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    Article  CAS  PubMed  Google Scholar 

  21. Holfmann R (1968) Organic and biological chemistry. J Am Chem Soc 90:1475–1485

    Article  Google Scholar 

  22. Liu F, Jang MH, Ha HD, Kim JH, Cho YH, Seo TS (2013) Facile synthesis method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv Mater 25:3657–3662

    Article  CAS  PubMed  Google Scholar 

  23. Saxena M, Sonkar SK, Sarkar S (2013) Water soluble nano carbons arrest the growth of mosquitos. RSC Adv 3:22504–22508

    Article  CAS  Google Scholar 

  24. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 6:14095–14104

    Article  Google Scholar 

  25. Chen B, Kadowaki Y, Inoue S, Ohkohchi M, Zhao X, Ando Y (2010) New Raman-peak at 1850 cm−1 observed in multiwalled carbon nanotubes produced by hydrogen arc discharge. J Nanosci Nanotechnol 10:4038–4042

    Article  CAS  PubMed  Google Scholar 

  26. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  27. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous nanostructured diamond-like carbon and nano diamond. Phil Trans R Soc Lond A 362:2477–2512

    Article  CAS  Google Scholar 

  28. Wang L, Wang Y, Hu T, Liu H, Yao C, Liu Y (2014) Gram scale synthesis of single crystalline graphene quantum dots with superior optical properties. Nat Commun 5:5357–5366

    Article  CAS  PubMed  Google Scholar 

  29. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CH, Yang X, Lee ST (2010) Water soluble fluorescent carbon quantum dots and photo catalytic design. Angew Chem Int Ed 49:4430–4434

    Article  CAS  Google Scholar 

  30. Rusli RJ, Amaratunga GAJ (1996) Photoluminescence behaviour of hydrogenated amorphous carbon. J Appl Phys 80:2998–3003

    Article  Google Scholar 

  31. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nano dot: synthesis properties and applications. J Mater Chem 22:24230–24253

    Article  CAS  Google Scholar 

  32. Gue X, Wang CF, Yu ZY, Chen L, Chen S (2012) Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem Commun 48:2692–2694

    Article  Google Scholar 

  33. Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, Li YF, Lida A, Tang Z, Zhao Y, Chai Z, Chen C (2011) Full assessment of fate and physiological behaviour of quantum dots utilizing Caenorhabditis elegans as model organism. Nano Lett 11:3174–32183

    Article  CAS  PubMed  Google Scholar 

  34. Ewbank JJ, Zugatsi O (2011) C. elegans: model host and tool for antimicrobial drug discovery. Dis Model Mech 4:300–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sonkar SK, Ghosh M, Roy M, Begum A, Sarkar S (2012) Carbon nano-onions as nontoxic and high-fluorescence bioimaging agent in food chain – an in-vivo study from unicellular E. coli to multicellular C. elegans. Mater Express 2:105–113

    Article  CAS  Google Scholar 

  36. Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In-vivo spectrofluorimetry reveals endogenous biomarkers that report health span and dietary restriction in Caenorhabditis elegans. Aging Cell 4:127–137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to CSIR for the partial financial support with grant No. 03(1328)/14/EMR-II, dt. 03.11.2014. Authors are also grateful to Ms. Ranjana Singh, and Prof. Ranjan Singh, Dept. of Physics, Institute of Science, BHU, Varanasi, India for their help in taking the Raman spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kumbhakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, A., Kole, A.K., Krishnaraj, R.N. et al. A Novel Technique of Synthesis of Highly Fluorescent Carbon Nanoparticles from Broth Constituent and In-vivo Bioimaging of C. elegans . J Fluoresc 26, 1541–1548 (2016). https://doi.org/10.1007/s10895-016-1854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1854-8

Keywords

Navigation