Skip to main content
Log in

A Sensitive Ratiometric Long-Wavelength Fluorescent Probe for Selective Determination of Cysteine/Homocysteine

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The development of sensitive fluorescence probes to detect biothiols such as cysteine and homocysteine has attracted great attention in recent times. Herein, we described the design and synthesis of coumarin based long-wavelength fluorescence probe, Bromo-2-benzothiazolyl-3-cyano-7-hydroxy coumarin (BBCH, 2) for selective detections of cysteine and homocysteine. The probe is rationally designed in such a way that both sulfhydryl and adjacent amino groups of thiols are involved in sensing process. Only cysteine/homocysteine able to react with BBCH to release fluorescence reporter (BCH, 1); while, glutathione and other amino acids unable to react with BBCH due to the absence of adjacent amino groups. In presence of cysteine, the color of BBCH is turns from colorless to red and thus BBCH is a naked eye fluorescence indicator for cysteine. Besides, BBCH can discriminate cysteine and homocysteine based on color changes and different reaction rates. The described sensing platform showed good sensing performances to detect cysteine and homocysteine with detection limits of 0.87 and 0.19 μM, respectively. Practical applicability was verified in biological and pharmaceutical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wood ZA, Schröder E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    Article  CAS  PubMed  Google Scholar 

  2. Hong R, Han G, Fernández JM, B-j K, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 128(4):1078–1079

    Article  CAS  PubMed  Google Scholar 

  3. Dai X, Wu Q-H, Wang P-C, Tian J, Xu Y, Wang S-Q, Miao J-Y, Zhao B-X (2014) A simple and effective coumarin-based fluorescent probe for cysteine. Biosens Bioelectron 59:35–39

    Article  CAS  PubMed  Google Scholar 

  4. Shahrokhian S (2001) Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem 73(24):5972–5978

    Article  CAS  PubMed  Google Scholar 

  5. HoáLee J (2008) Fluorescence turn-on probe for homocysteine and cysteine in water. Chem Commun 46:6173–6175

    Google Scholar 

  6. Jung HS, Chen X, Kim JS, Yoon J (2013) Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42(14):6019–6031

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39(6):2120–2135

    Article  CAS  PubMed  Google Scholar 

  8. Lv H, Yang X-F, Zhong Y, Guo Y, Li Z, Li H (2014) Native chemical ligation combined with spirocyclization of benzopyrylium dyes for the ratiometric and selective fluorescence detection of cysteine and homocysteine. Anal Chem 86(3):1800–1807

    Article  CAS  PubMed  Google Scholar 

  9. Niu L-Y, Zheng H-R, Chen Y-Z, Wu L-Z, Tung C-H, Yang Q-Z (2014) Fluorescent sensors for selective detection of thiols: expanding the intramolecular displacement based mechanism to new chromophores. Analyst 139(6):1389–1395

    Article  CAS  PubMed  Google Scholar 

  10. Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, Fletcher KA, Lowry M, Schowalter CM, Lawrence CM (2005) Detection of homocysteine and cysteine. J Am Chem Soc 127(45):15949–15958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee MH, Yang Z, Lim CW, Lee YH, Dongbang S, Kang C, Kim JS (2013) Disulfide-cleavage-triggered chemosensors and their biological applications. Chem Rev 113(7):5071–5109

    Article  CAS  PubMed  Google Scholar 

  12. Lee MH, Han JH, Lee J-H, Choi HG, Kang C, Kim JS (2012) Mitochondrial thioredoxin-responding off–on fluorescent probe. J Am Chem Soc 134(41):17314–17319

    Article  CAS  PubMed  Google Scholar 

  13. Niu L-Y, Guan Y-S, Chen Y-Z, Wu L-Z, Tung C-H, Yang Q-Z (2012) BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J Am Chem Soc 134(46):18928–18931

    Article  CAS  PubMed  Google Scholar 

  14. Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z (2009) A highly sensitive fluorescence probe for fast thiol‐quantification assay of glutathione reductase. Angew Chem Int Ed 48(22):4034–4037

    Article  CAS  Google Scholar 

  15. Yin C, Huo F, Zhang J, Martínez-Máñez R, Yang Y, Lv H, Li S (2013) Thiol-addition reactions and their applications in thiol recognition. Chem Soc Rev 42(14):6032–6059

    Article  CAS  PubMed  Google Scholar 

  16. Yang X, Guo Y, Strongin RM (2011) Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed 50(45):10690–10693

    Article  CAS  Google Scholar 

  17. Rusin O, St. Luce NN, Agbaria RA, Escobedo JO, Jiang S, Warner IM, Dawan FB, Lian K, Strongin RM (2004) Visual detection of cysteine and homocysteine. J Am Chem Soc 126(2):438–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan L, Lin W, Yang Y (2011) A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles. Chem Commun 47(22):6275–6277

    Article  CAS  Google Scholar 

  19. Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Sessler JL, Kim TW, Kang C, Kim JS (2012) A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials 33(3):945–953

    Article  CAS  PubMed  Google Scholar 

  20. Hong K-H, Lim S-Y, Yun M-Y, Lim J-W, Woo J-H, Kwon H, Kim H-J (2013) Selective detection of cysteine over homocysteine and glutathione by a bis(bromoacetyl)fluorescein probe. Tetrahedron Lett 54(23):3003–3006

    Article  CAS  Google Scholar 

  21. Zhu B, Zhao Y, Zhou Q, Zhang B, Liu L, Du B, Zhang X (2013) A chloroacetate-caged fluorescein chemodosimeter for imaging cysteine/homocysteine in living cells. Eur J Org Chem 2013(5):888–893. doi:10.1002/ejoc.201201407

    Article  CAS  Google Scholar 

  22. Wang F, Guo Z, Li X, Li X, Zhao C (2014) Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn‐on fluorescent outputs. Chem Eur J 20(36):11471–11478

    Article  CAS  PubMed  Google Scholar 

  23. Zhu B, Wang W, Liu L, Jiang H, Du B, Wei Q (2014) A highly selective colorimetric and long-wavelength fluorescent probe for Hg 2+. Sensors Actuators B Chem 191:605–611

    Article  CAS  Google Scholar 

  24. Gnaim S, Shabat D (2014) Quinone-methide species, a gateway to functional molecular systems: from self-immolative dendrimers to long-wavelength fluorescent dyes. Acc Chem Res 47(10):2970–2984

    Article  CAS  PubMed  Google Scholar 

  25. Huang S-T, Ting K-N, Wang K-L (2008) Development of a long-wavelength fluorescent probe based on quinone–methide-type reaction to detect physiologically significant thiols. Anal Chim Acta 620(1):120–126

    Article  CAS  PubMed  Google Scholar 

  26. Guan Y-S, Niu L-Y, Chen Y-Z, Wu L-Z, Tung C-H, Yang Q-Z (2014) A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging. RSC Adv 4(16):8360–8364

    Article  CAS  Google Scholar 

  27. Liu J, Sun Y-Q, Zhang H, Huo Y, Shi Y, Guo W (2014) Simultaneous fluorescent imaging of Cys/Hcy and GSH from different emission channels. Chem Sci 5(8):3183–3188

    Article  CAS  Google Scholar 

  28. Liu J, Sun Y-Q, Huo Y, Zhang H, Wang L, Zhang P, Song D, Shi Y, Guo W (2013) Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J Am Chem Soc 136(2):574–577

    Article  PubMed  Google Scholar 

  29. Roubinet B, Renard P-Y, Romieu A (2014) New insights into the water-solubilization of thiol-sensitive fluorogenic probes based on long-wavelength 7-hydroxycoumarin scaffolds. Dyes Pigments 110:270–284

    Article  CAS  Google Scholar 

  30. Yeh A-I, Huang Y-C, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79(1):192–199

    Article  CAS  Google Scholar 

  31. Zhao D, Li J, Yang T, He Z (2014) “Turn off–on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots. Biosens Bioelectron 52:29–35

    Article  CAS  PubMed  Google Scholar 

  32. Wang F, Zhou L, Zhao C, Wang R, Fei Q, Luo S, Guo Z, Tian H, Zhu W-H (2015) A dual-response BODIPY-based fluorescent probe for the discrimination of glutathione from cystein and homocystein. Chem Sci 6(4):2584–2589

    Article  CAS  Google Scholar 

  33. Martin RB, Hedrick RI (1962) Intramolecular SO and SN acetyl transfer reactions. J Am Chem Soc 84(1):106–110

    Article  CAS  Google Scholar 

  34. Mandolini L (1978) Ring-closure reactions. 11. The activation parameters for the formation of four-to six-membered lactones from. omega.-bromoalkanoate ions. The role of the entropy factor in small-and common-ring formation. J Am Chem Soc 100(2):550–554

    Article  CAS  Google Scholar 

  35. Illuminati G, Mandolini L (1981) Ring closure reactions of bifunctional chain molecules. Acc Chem Res 14(4):95–102

    Article  CAS  Google Scholar 

  36. Lin W, Long L, Yuan L, Cao Z, Chen B, Tan W (2008) A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org Lett 10(24):5577–5580

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Shao X, Wang Y, Pan F, Kang R, Peng F, Huang Z, Zhang W, Zhao W (2015) Dual emission channels for sensitive discrimination of Cys/Hcy and GSH in plasma and cells. Chem Commun 51(20):4245–4248

    Article  CAS  Google Scholar 

  38. Wei M, Yin P, Shen Y, Zhang L, Deng J, Xue S, Li H, Guo B, Zhang Y, Yao S (2013) A new turn-on fluorescent probe for selective detection of glutathione and cysteine in living cells. Chem Commun 49(41):4640–4642

    Article  CAS  Google Scholar 

  39. Das P, Mandal AK, Baidya M, Ghosh SK, Das A (2013) Designing a thiol specific fluorescent probe for possible use as a reagent for intracellular detection and estimation in blood serum: kinetic analysis to probe the role of intramolecular hydrogen bonding. Org Biomol Chem 11(38):6604–6614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology, Taiwan (NSC 103-2811-M-027-002, 102-2113-M-027-002-MY3, and MOST 104-2622-M-027-001-CC3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Tung Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manibalan, K., Chen, SM., Mani, V. et al. A Sensitive Ratiometric Long-Wavelength Fluorescent Probe for Selective Determination of Cysteine/Homocysteine. J Fluoresc 26, 1489–1495 (2016). https://doi.org/10.1007/s10895-016-1844-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1844-x

Keywords

Navigation