Skip to main content
Log in

Optical Properties of Some Fluorinated Poly(1,3,4-Oxadiazole-Ether)s in Homogeneous and Heterogeneous Media. Changes Induced by SnO2, NiO and SnO2/NiO Mixed-Oxide Nanoparticles

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Optical characteristics of some fluorinated poly(1,3,4-oxadiazole-ether)s in presence of SnO2, NiO and SnO2/NiO mixed-oxide nanoparticles (NPs) was investigated. The interactions between polymers and metal oxide NPs were studied by steady-state UV-Vis absorption and fluorescence spectroscopy techniques. The absorption and fluorescence signals of all investigated polymers was modified by presence of both pure and mixed-oxide nanoparticles. The moderate values of Stern-Volmer quenching constant and non-linear trend of Scott plot indicate the less affinity between metal oxide NPs and polymers. The solvation behavior of some fluorinated poly(1,3,4-oxadiazole-ether)s in chloroform–N,N-dimethylformamide and N,N-dimethylformamide-dimethylsulfoxide mixtures was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tao Y, Wang Q, Shang Y, Yang C, Ao L, Qin J, Ma D, Shua Z (2009) Multifunctional bipolar triphenylamine/oxadiazole derivatives: highly efficient blue fluorescence, red phosphorescence host and two-color based white OLEDs. Chem Commun 1:77–79. doi:10.1039/b816264f

    Article  Google Scholar 

  2. Hamciuc C, Hamciuc E, Ipate A, Cristea M, Okrasa L (2009) Thermal and electrical properties of copoly(1,3,4-oxadiazole-ethers) containing fluorene groups. J Appl Polym Sci 113:383–391. doi:10.1002/app.30007

    Article  CAS  Google Scholar 

  3. Dhara MG, Banerjee S (2010) Fluorinated high-performance polymers: poly (arylene ether) s and aromatic polyimides containing trifluoromethyl groups. Prog Polym Sci 35:1022–1077. doi:10.1016/j.progpolymsci.2010.04.003

    Article  CAS  Google Scholar 

  4. Sun YM (2001) Synthesis and optical properties of novel blue light-emitting polymers with electron affinitive oxadiazole. Polymer 42:9495–9504. doi:10.1016/S0032-3861(01)00495-5

    Article  CAS  Google Scholar 

  5. Kwak JK, Park KH, Yun DY, Lee DU, Kim TW (2010) Microstrucural and optical properties of SnO2 nanoparticles formed by using a solvothermal synthesis method. J Korean Phys Soc 57(6):1803. doi:10.3938/jkps.57.1803

    CAS  Google Scholar 

  6. Kamaraj P, Vennila R, Arthanareeswari M, Devikala S (2014) Biological activies of tin oxide nanoparticles synthesized using plant extract. World J Pharm Pharm Sci 3(9):382–388

    Google Scholar 

  7. Ayeshamariam A, Meera T, Jayachandran B, Kumar P, Bououdina M (2013) Green synthesis of nanostructured materials for antibacterial and antifungal activities. Int J Bioassays 02(01):304–311

    CAS  Google Scholar 

  8. Erkan A, Bakir U, Karakas G (2006) Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A 184(3):313–321. doi:10.1016/j.jphotochem.2006.05.001

    Article  CAS  Google Scholar 

  9. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276(5317):1395–1397. doi:10.1126/science.276.5317.1395

    Article  CAS  Google Scholar 

  10. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FC, Reinhoudt DN, Möller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002. doi:10.1103/PhysRevLett.89.203002

    Article  PubMed  CAS  Google Scholar 

  11. Kitson SC, Barnes WL, Sambles JR (1995) Surface-plasmon energy gaps and photoluminescence. Phys Rev B Condens Matter 52:1441. doi:10.1103/PhysRevB.52.11441

    Article  Google Scholar 

  12. Szmacinski H, Lakowicz JR, Johnson ML (1994) Fluorescence lifetime imaging microscopy: homodyne technique using high-speed gated image intensifier. Methods Enzymol 240:723–748

    Article  PubMed  CAS  Google Scholar 

  13. Pompa PP, Martiradonna L, Torre AD, Sala FD, Manna L, Vittorio MD, Calabi F, Cingolani R, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol 1(2):126–130. doi:10.1038/nnano.2006.93

    Article  PubMed  CAS  Google Scholar 

  14. Ipate AM, Homocianu M, Hamciuc C, Airinei A, Bruma M (2014) Photophysical behavior of some aromatic poly(1,3,4-oxadiazole-ether)s derivatives. Spectrochim Acta A Mol Biomol Spectrosc 123:167–175. doi:10.1016/j.saa.2013.12.057

    Article  PubMed  CAS  Google Scholar 

  15. Homocianu M, Ipate AM, Hamciuc C, Airinei A (2015) Environment effects on the optical properties of some fluorinated poly(oxadiazole ether)s in binary solvent mixtures. J Lumin 157:315–320. doi:10.1016/j.jlumin.2014.09.009

    Article  CAS  Google Scholar 

  16. Pascariu Dorneanu P, Airinei A, Olaru N, Homocianu M, Nica V, Doroftei F (2014) Preparation and characterization of NiO, ZnO and NiO–ZnO composite nanofibers by electrospinning method. Mat Chem Phys 148:1029–1035. doi:10.1016/j.matchemphys.2014.09.014

    Article  Google Scholar 

  17. Tazikeh S, Akbari A, Talebi A, Talebi E (2014) Synthesis and characterization of tin oxide nanoparticles via the Co-precipitation method. Mat Sci-Poland 32(1):98–101. doi:10.2478/s13536-013-0164-y

    Article  CAS  Google Scholar 

  18. Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Dramatic localized electromagnetic enhancement in Plasmon resonant nanowires. Chem Phys Lett 341:1–6. doi:10.1016/S0009-2614(01)00171-3

    Article  CAS  Google Scholar 

  19. Gu F, Wang SF, Lu MK, Zhou GJ, Xu D, Yuan DR (2004) Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method. J Phys Chem B 108:8119–8123

    Article  CAS  Google Scholar 

  20. Kavitha SR, Umadevi M, Vanelle P, Terme T, Khoumeri O (2014) Spectral investigations on the influence of silver nanoparticles on the fluorescence quenching of 1,4-dimethoxy-2,3-dibromomethylanthracene-9,10-dione. Eur Phys J D 68:308. doi:10.1140/epjd/e2014-50257-5

    Article  Google Scholar 

  21. Lakowicz JR (2006) Principles of fluorescence spectroscopy, third edn. Springer, New York, USA

    Book  Google Scholar 

  22. Suvetha Rani J, Sasirekha V, Ramakrishnan V (2013) Study of interaction between tin dioxide nanoparticle and 1,4-dihydroxy 2,3-dimethyl 9,10-anthraquinone sensitizer. J Lumin 144:74–78. doi:10.1016/j.jlumin.2013.06.026

    Article  CAS  Google Scholar 

  23. Haldar KK, Patra A (2008) Efficient resonance energy transfer from dye to Au@SnO2 core–shell nanoparticles. Chem Phys Lett 462:88–91. doi:10.1016/j.cplett.2008.07.068

    Article  CAS  Google Scholar 

  24. Wargnier R, Baranov AW, Maslow VG, Stsipura V, Artemyev M, Pluot M, Sukhanova A, Nabiev I (2004) Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot − nanogold assemblies. Nano Lett 4:451–457. doi:10.1021/nl0350938

    Article  CAS  Google Scholar 

  25. Ipate AM, Hamciuc C, Homocianu M, Musteata VE, Nicolescu A, Bruma M, Belomoina N (2015) Highly fluorinated poly(1,3,4-oxadiazole-ether)s structural, optical and dielectric characteristics. J Polym Res 22(95):1. doi:10.1007/s10965-015-0687-5

    CAS  Google Scholar 

  26. Umadevi M, Kumari MV, Bharathi MS, Vanelle P, Terme T (2011) Investigations of preferential solvation on 1,4-dimethoxy-3-methyl anthracene-9,10-dione. Spectrochim Acta A Mol Biomol Spectrosc 78:122–127. doi:10.1016/j.saa.2010.09.008

    Article  PubMed  CAS  Google Scholar 

  27. Frankel LS, Langford CH, Stengle TR (1970) Nuclear magnetic resonance techniques for the study of preferential solvation and the thermodynamics of preferential solvation. J Phys Chem 74:1376–1381. doi:10.1021/j100701a039

    Article  CAS  Google Scholar 

  28. Page PM, McCarty TA, Munson CA, Bright FV (2008) The local microenvironment surrounding dansyl molecules attached to controlled pore glass in pure and alcohol-modified supercritical carbon dioxide. Langmuir 24:6616–6623. doi:10.1021/la8005184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Homocianu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homocianu, M., Airinei, A., Ipate, A.M. et al. Optical Properties of Some Fluorinated Poly(1,3,4-Oxadiazole-Ether)s in Homogeneous and Heterogeneous Media. Changes Induced by SnO2, NiO and SnO2/NiO Mixed-Oxide Nanoparticles. J Fluoresc 26, 217–224 (2016). https://doi.org/10.1007/s10895-015-1704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1704-0

Keywords

Navigation