Skip to main content
Log in

Rotational Diffusion of a New Large Non Polar Dye Molecule in Alkanes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Rotational reorientation times of a newly synthesized 2,5-bis(phenylethynyl)1,4-bis(dodecyloxy) benzene (DDPE) are experimentally determined in series of n-alkanes by employing steady state and time resolved fluorescence depolarization technique with a view to understand rotational dynamics of large non-polar solute molecule in non-polar solvents and few general solvents of different sizes and varying viscosity. It is observed that rotational reorientation times vary linearly as function of viscosity. The hydrodynamic stick condition describes the experimental results at low viscosities while the results tend to deviate significantly from it at higher viscosities. This is attributed to the possibility of long chains in solvents hosting a variety of chain defects (end-gauche, double-gauche, all-trans, kink, etc.) thereby reducing the effective length of the molecule, leading to a slightly reduced friction. The experimental results are compared with the predictions of Stokes-Einstein-Debye (SED) hydrodynamic theory as well as the quasi-hydrodynamic theories of Gierer-Wirtz (GW) and Dote-Kivelson-Shwartz (DKS). The predictions from these theories underestimate τr in the solvents employed in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fleming GR (1986) Chemical applications of ultrafast spectroscopy. Oxford University Press, New York

    Google Scholar 

  2. Laitinen E, Korppi-Tommola J, Linnanto J (1997) Dielectric friction effects on rotational reorientation of three cyanine dyes in n-alcohol solutions. J Chem Phys 107:7601–7612

    Article  CAS  Google Scholar 

  3. Benzler J, Luther K (1997) Rotational relaxation of biphenyl and p-terphenyl in n-alkanes: the breakdown of the hydrodynamic description. Chem Phys Lett 279:333–338

    Article  CAS  Google Scholar 

  4. Chuang JT, Eisenthal KB (1971) Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses. Chem Phys Lett 11:368–370

    Article  CAS  Google Scholar 

  5. Fleming GR, Morris JM, Robinson GW (1976) Direct observation of rotational diffusion by picoseconds spectroscopy. Chem Phys 17:91–100

    Article  CAS  Google Scholar 

  6. Fleming GR, Knight AEW, Morris JM, Robbins RJ, Robinson GW (1977) Time dependent fluorescence depolarisation studies of BBOT. Chem Phys Lett 51:399–402

    Article  CAS  Google Scholar 

  7. Porter G, Sadkowski PJ, Tredwell CJ (1977) Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy. Chem Phys Lett 49:416–420

    Article  CAS  Google Scholar 

  8. Moog RS, Ediger MD, Boxer SG, Fayer MD (1982) Viscosity dependence of the rotational reorientation of rhodamine B in mono and poly alcohols. Picosecond transient grating experiments. J Phys Chem 86:4694–4700

    Article  CAS  Google Scholar 

  9. Spears KG, Cramer LE (1978) Rotational diffusion in aprotic and protic solvents. Chem Phys 30:1–8

    Article  CAS  Google Scholar 

  10. Millar DP, Shah R, Zewail AH (1979) Picosecond saturation spectroscopy of cresyl violet rotational diffusion by a “sticking” boundary condition in the liquid phase. Chem Phys Lett 66:435–440

    Article  CAS  Google Scholar 

  11. Rice SA, Kenney G, Wallace A (1980) Time resolved fluorescence depolarization studies of rotational relaxation in viscous media. Chem Phys 47:161–170

    Article  CAS  Google Scholar 

  12. von Jena A, Lessing HE (1979) Rotational diffusion anomalies in dye solutions from transient dichroism experiments. Chem Phys 40:245–256

    Article  Google Scholar 

  13. von Jena A, Lessing HE (1981) Rotational diffusion of dyes in solvents of low viscosity from transient-dichroism experiments. Chem Phys Lett 78:187–193

    Article  Google Scholar 

  14. Nagachandra KH, Mannekutla JR, Shivkumar MA, Inamdar SR (2012) Influence of temperature on rotational diffusion of dipolar laser dyes in glycerol. J Lumin 132:570–578

    Article  CAS  Google Scholar 

  15. Canonica S, Schmidt A, Wild UP (1985) The rotational diffusion of p-terphenyl and p-quaterphenyl in non polar solvents. Chem Phys Lett 122:529–534

    Article  CAS  Google Scholar 

  16. Waldeck DH, Fleming GR (1981) Influence of viscosity and temperature on rotational reorientation. Anisotropic absorption studies of 3,3- Diethyloxadicarbocyanine iodide. J Phys Chem 85:2614–2617

    Article  CAS  Google Scholar 

  17. Dutt GB, Doraiswamy S, Periasamy N, Venkataraman B (1990) Rotational reorientation dynamics of polar dye molecular probes by picoseconds laser spectroscopic technique. J Chem Phys 93:8498–8510

    Article  CAS  Google Scholar 

  18. Inamdar SR, Gayatri BR, Mannekutla JR (2009) Rotational diffusion of coumarins in aqueous DMSO. J Fluoresc 19:693–702

    Article  CAS  PubMed  Google Scholar 

  19. Alavi DS, Hartman RS, Waldeck DH (1991) The influence of wave vector dependent dielectric properties on rotational friction. Rotational diffusion of phenoxazine dyes. J Chem Phys 95:6770–6783

    Article  CAS  Google Scholar 

  20. Krishnamurthy M, Khan KK, Doraiswamy S (1993) Rotational diffusion kinetics of polar solutes in hexamethylphosphoramide–water systems. J Chem Phys 98:8640–8646

    Article  CAS  Google Scholar 

  21. Dutt GB, Singh MK, Sapre AV (1998) Rotational dynamics of neutral red: do ionic and neutral solutes experience the same friction? J Chem Phys 109:5994–6003

    Article  CAS  Google Scholar 

  22. Waldeck DH, Lotshaw WT, McDonald DB, Fleming GR (1982) Ultra violet picosecond pump-probe spectroscopy with a synchronously pumped dye laser. Rotational diffusion of diphenyl butadiene. Chem Phys Lett 88:297–300

    Article  CAS  Google Scholar 

  23. Philips L, Webb S, Clark J (1985) High-pressure studies of rotational reorientation dynamics: the role ofdielectric friction. J Chem Phys 83:5810–5821

    Article  CAS  Google Scholar 

  24. Ito N, Kajimoto O, Hara K (2000) Picosecond time resolved fluorescence depolarization of p-terphenyl at high pressures. Chem Phys Lett 318:118–124

    Article  CAS  Google Scholar 

  25. Hu CM, Zwanzig R (1974) Rotational friction coefficients for spheroids with the slipping boundary condition. J Chem Phys 60:4354–4357

    Article  CAS  Google Scholar 

  26. Courtney SH, Kim SK, Canonica S, Fleming GR (1986) Rotational diffusion of stilbene in alkane and alcohol solutions. J Chem Soc Faraday Trans 82:2065–2072

    Article  CAS  Google Scholar 

  27. D-Amotz B, Drake JM (1988) The solute size effect in rotational diffusion experiments: a test of microscopic friction theories. J Chem Phys 89:1019–1029

    Article  Google Scholar 

  28. Roy M, Doraiswamy S (1993) Rotational dynamics of nonpolar solutes in different solvents: comparative evaluation of the hydrodynamic and quasihydrodynamic models. J Chem Phys 98:3213–3223

    Article  CAS  Google Scholar 

  29. Williams AM, Jiang Y, D-Amotz B (1994) Molecular reorientation dynamics and microscopic friction in liquids. Chem Phys 180:119–129

    Article  CAS  Google Scholar 

  30. Jiang Y, Blanchard GJ (1994) Rotational diffsion dynamics of perylene in n-alkanes. Observation of a solvent length dependent change of boundary condition. J Phys Chem 98:6436–6440

    Article  CAS  Google Scholar 

  31. Anestopoulos D, Fakis M, Polyzos I, Tsigaridas G, Persephonis P, Giannetas V (2005) Study of the isotropic and anisotropic fluorescence of two oligothiophenes by femtosecond time-resolved spectroscopy. J Phys Chem B 109:9476–9481

    Article  CAS  PubMed  Google Scholar 

  32. Inamdar SR, Mannekutla JR, Mulimani BG, Savadatti MI (2006) Rotational dynamics of non polar laser dyes. Chem Phys Lett 429:141–146

    Article  CAS  Google Scholar 

  33. Gierer A, Writz K (1953) Molekulare Theorie der Mikroreibung. Z Naturforsch, A 8:532–538

    Article  Google Scholar 

  34. Dote JL, Kivelson D, Schwartz R (1981) A molecular quasi-hydrodynamic free space model for molecular rotational relaxation in liquids. J Phys Chem 85:2169–2180

    Article  CAS  Google Scholar 

  35. Hilderbrand JH (1971) Motions of Molecules in Liquids: Viscosity and Diffusivity. Science 174:490–493

    Article  Google Scholar 

  36. Batschinski AJ (1913) Investigations of the internal friction of fluids. Z Phys Chem 84:643–651

    Google Scholar 

  37. De Backer S, Negri MR, De Feyter S, Dutt GB, Ameloot M, De Schryver FC, Mullen K, Holtrup F (1995) Flurescence depolarization from 2,5,8,11-tetra-t-butylperylene globally analysed upon excitation in S1 and Sn. Chem Phys Lett 233:538–544

    Article  Google Scholar 

  38. Selvaraju C, Ramamurthy P (2004) Excited state behaviour and photo ionization of 1,8-Acridinedione dyes in micelles-comparison with NADA oxidation. Chem Eur J 10:2253–2262

    Article  CAS  PubMed  Google Scholar 

  39. Lacowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York

    Book  Google Scholar 

  40. Li H, Powell DR, Hayashi RK, West R (1998) Poly (2,5-dialkoxy-p-phenylene) ethynylene-p-(phenyleneethnylene)s and their model compounds. Macromolecules 31:52–58

    Article  CAS  Google Scholar 

  41. Thomas R, Varghese S, Kulkarni GU (2009) The influence of crystal packing on the solid state fluorescence behaviour of alkyloxy substituted phenyleneethynylenes. J Mater Chem 19:4401–4406

    Article  CAS  Google Scholar 

  42. Edward JT (1970) Molecular volumes and the stokes-Einstein equation. J Chem Educ 47:261–270

    Article  CAS  Google Scholar 

  43. Dutt GB, Ramakrishna G (2000) Temperature-dependent rotational relaxation of nonpolar probes in mono and diols: size effects versus hydrogen bonding. J Chem Phys 112:4676–4682

    Article  CAS  Google Scholar 

  44. Dutt GB, Srivatsavoy VJP, Sapre AV (1999) Rotational dynamics of pyrrolopyrrole derivatives in alcohols: does solute-solvent hydrogen bonding really hinder molecular rotation? J Chem Phys 110:9623–9629

    Article  CAS  Google Scholar 

  45. Ben-Amotz D, Scott TW (1987) Microscopic frictional forces on molecular motion in liquids. Picosecond rotational diffusion in alkanes and alcohols. J Chem Phys 87:3739–3748

    Article  CAS  Google Scholar 

  46. Grummet UW, Brickner E, Gade R (2007) Rotational relaxation of linear π-systems with flexible side chains in solution. J Fluoresc 17:163–170

    Article  Google Scholar 

  47. Anderton RM, Kauffman JF (1994) Temperature-dependent rotational relaxation of diphenylbutadiene in n-alcohols: a test of the quasi hydrodynamic free space model. J Phys Chem 98:12117–12124

    Article  CAS  Google Scholar 

  48. Brocklehurst B, Young RN (1995) Rotation of perylene in alkanes: non hydrodynamic behavior. J Phys Chem 99:40–43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the University Grants Commission, New Delhi, under Major Research Project (F.No. 37-250/2009 dated 5.2.2010). The authors thank Prof. Ramamurthy, NCUFP, Chennai, for providing time resolved fluorescence anisotropy measurements. Thanks are due to Dr. M.K. Singh of BARC, Mumbai for his help in Fluorescence Lifetime measurements. One of the authors, Radha Goudar is grateful to the Management of JSS, Dharwad, India. Ritu Gupta and G.U. Kulkarni thank DST for funding; Ritu Gupta also thanks Dr. Reji Thomas for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev R. Inamdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudar, R., Gupta, R., Kulkarni, G.U. et al. Rotational Diffusion of a New Large Non Polar Dye Molecule in Alkanes. J Fluoresc 25, 1671–1679 (2015). https://doi.org/10.1007/s10895-015-1654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1654-6

Keywords

Navigation