Skip to main content
Log in

Investigation of the Binding Between Pepsin and Nucleoside Analogs by Spectroscopy and Molecular Simulation

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, the interactions of pepsin with CYD (cytidine) or nucleoside analogs, including FNC (2′-deoxy-2′-β-fluoro-4′-azidocytidine) and CMP (cytidine monophosphate), were investigated by fluorescence, UV–visible absorption and synchronous fluorescence spectroscopy under mimic physiological conditions. The results indicated that FNC (CYD/CMP) caused the fluorescence quenching by the formation of complex. The binding constants and thermo-dynamic parameters at three different temperatures were obtained. The hydrophobic and electrostatic interactions were the predominant intermolecular forces to stabilize the complex. The F atom in FNC might weaken the binding of nucleoside analog to pepsin. Results showed that CYD was the strongest quencher and bound to pepsin with higher affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gole A, Dash C, Rao M et al (2000) Encapsulation and biocatalytic activity of the enzyme pepsin in fatty lipid films by selective electrostatic interactions. Chem Commun 4:297–298

    Article  Google Scholar 

  2. Fruton JS (2002) A history of pepsin and related enzymes. Q Rev Biol 77:127–147

    Article  CAS  PubMed  Google Scholar 

  3. Scorilas A, Diamandis EP, Levesque MA et al (1999) Immunoenzymatically determined pepsinogen C concentration in breast tumor cytosols: an independent favorable prognostic factor in node-positive patients. Clin Cancer Res 5:1778–1785

    CAS  PubMed  Google Scholar 

  4. Muramatsu M, Kinoshita K, Fagarasan S et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q, Li Y, Song C et al (2010) Synthesis and anti-HiV acticity of 2′-deoxy-2′-fluoro-4′-C-ethynyl nucleoside analogs. Bioorg Med Chem Lett 20:4053–4056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zheng L, Wang Q, Yang X et al (2012) Antiviral activity of FNC, 2′-deoxy-2′-β-fluoro4′-azidocytidine, against human and duck HBV replication. Antivir Ther 17:679–687

    Article  CAS  PubMed  Google Scholar 

  7. Pascal JM (2008) DNA and RNA ligases: structural variations and shared mechanisms. Curr Opin Struct Biol 18:96–105

    Article  CAS  PubMed  Google Scholar 

  8. Bi S, Song D, Tian Y et al (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta A 61:629–636

    Article  Google Scholar 

  9. Wang R, Dou H, Yin Y, Xie Y, Sun L, Liu C, Dong J, Huang G, Zhu Y, Song C, Chang J (2014) Investigation of the interaction between isomeric derivatives and human serum albumin by fluorescence spectroscopy and molecular modeling. J Lumin 154:8–14

    Article  CAS  Google Scholar 

  10. He W, Dou H, Zhang L, Wang L, Wang R, Chang J (2014) Spectroscopic study on the interaction of trypsin with bicyclol and analogs. Spectrochim Acta A 118:510–519

    Article  CAS  Google Scholar 

  11. Wang R, Xie Y, Zhang Y et al (2013) Comparative study of the binding of pepsin to four alkaloids by spectrofluorimetry. Spectrochim Acta A 108:62–74

    Article  Google Scholar 

  12. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  13. Gerbanowski A, Malabat C, Rabiller C et al (1999) Grafting of aliphatic and aromatic probes on rapeseed 2S and 12S proteins: influence on their structural and physicochemical properties. J Agric Food Chem 47:5218–5226

    Article  CAS  PubMed  Google Scholar 

  14. Boaz H, Rollefson GK (1950) The quenching of fluorescence. Deviations from the Stern-Volmer law. J Am Chem Soc 72:3435–3443

    Article  CAS  Google Scholar 

  15. Wagner PJ, Kochevar I (1968) Triplet energy transfer. III. How efficient is diffusion-controlled triplet energy transfer. J Am Chem Soc 90:2232–2238

    Article  CAS  Google Scholar 

  16. Wang Y, Zhang H, Zhou Q et al (2009) A study of the binding of colloidal Fe3O4 with bovine hemoglobin using optical spectroscopy. Colloids Surf A 337:102–108

    Article  CAS  Google Scholar 

  17. Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254

    Article  CAS  Google Scholar 

  18. Huang Y, Zhang Z, Zhang D et al (2001) Flow-injection analysis chemiluminescence detection combined with microdialysis sampling for studying protein binding of drug. Talanta 53:835–841

    Article  CAS  PubMed  Google Scholar 

  19. Hu YJ, Liu Y, Shen XS et al (2005) Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J Mol Struct 738:143–147

    Article  CAS  Google Scholar 

  20. Šoltés L, Mach M (2002) Estimation of drug–protein binding parameters on assuming the validity of thermodynamic equilibrium. J Chromatogr B 768:113–119

    Article  Google Scholar 

  21. Becktel WJ, Schellman JA (1987) Protein stability curves. Biopolymers 26:1859–1877

    Article  CAS  PubMed  Google Scholar 

  22. Kragh-Hansen U, Chuang VTG, Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 25:695–704

    Article  CAS  PubMed  Google Scholar 

  23. Ghuman J, Zunszain PA, Petitpas I et al (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 253:38–52

    Article  Google Scholar 

  24. Kandagal PB, Ashoka S, Seetharamappa J et al (2006) Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed Anal 41:393–399

    Article  CAS  PubMed  Google Scholar 

  25. Tian J, Liu J, He W et al (2004) Probing the binding of scutellarin to human serum albumin by circular dichroism, fluorescence spectroscopy, FTIR, and molecular modeling method. Biomacromolecules 5:1956–1961

    Article  CAS  PubMed  Google Scholar 

  26. Sklar LA, Hudson BS, Simoni RD (1977) Conjugated polyene fatty acids as fluorescent probes: binding to bovine serum albumin. Biochemistry 16:5100–5108

    Article  CAS  PubMed  Google Scholar 

  27. Stratikos E, Gettins PGW (1999) Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70 Å and full insertion of the reactive center loop into β-sheet A. Proc Natl Acad Sci 96:4808–4813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Valeur B, Berberan-Santos MN (2013) Molecular fluorescence: principles and applications. Wiley, New York

    Google Scholar 

  29. He W, Li Y, Xue C et al (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg Med Chem 135:1837–1845

    Article  Google Scholar 

  30. Lloyd JBF (1971) Synchronized excitation of fluorescence emission spectra. Nature 231:64–65

    CAS  Google Scholar 

  31. Yuan T, Weljie AM, Vogel HJ (1998) Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Biochemistry 37:3187–3195

    Article  CAS  PubMed  Google Scholar 

  32. Tang J, Luan F, Chen X (2006) Binding analysis of glycyrrhetinic acid to human serum albumin: Fluorescence spectroscopy, FTIR, and molecular modeling. Bioorg Med Chem 14:3210–3217

    Article  CAS  PubMed  Google Scholar 

  33. Congdon RW, Muth GW, Splittgerber AG (1993) The binding interaction of Coomassie blue with proteins. Anal Biochem 213:407–413

    Article  CAS  PubMed  Google Scholar 

  34. Wang R, Chai Y, Wang R et al (2012) Study of the interaction between bovine serum albumin and analogs of Biphenyldicarboxylate by spectrofluorimetry. Spectrochim Acta A 96:324–331

    Article  Google Scholar 

  35. Ni Y, Su S, Kokot S (2002) Spectrofluorimetric studies on the binding of salicylic acid to bovine serum albumin using warfarin and ibuprofen as site markers with the aid of parallel factor analysis. Anal Chim Acta 580:206–215

    Article  Google Scholar 

  36. Shen L, Xu H, Huang F, Li Y, Xiao H, Yang Z, Hu Z, He Z, Zeng Z, Li Y (2015) Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods. Spectrochim Acta A 135:256–263

    Article  CAS  Google Scholar 

  37. Zeng HJ, Qi T, Yang R, You J, Qu LB (2014) Spectroscopy and molecular docking study on the interaction behavior between nobiletin and pepsin. J Fluoresc 24:1031–1040

    Article  CAS  PubMed  Google Scholar 

  38. Zeng HJ, You J, Liang HL, Qi T, Yang R, Qu LB (2014) Investigation on the binding interaction between silybin and pepsin by spectral and molecular docking. Int J Biol Macromol 67:105–11

    Article  CAS  PubMed  Google Scholar 

  39. Zeng HJ, Liang HL, You J, Qu LB (2014) Study on the binding of chlorogenic acid to pepsin by spectral and molecular docking. Luminescence 29:715–721

    Article  CAS  PubMed  Google Scholar 

  40. Huang Y, Yan J, Liu B, Yu Z, Gao X, Tang Y, Zi Y (2010) Investigation on interaction of prulifloxacin with pepsin: a spectroscopic analysis. Spectrochim Acta A 75:1024–1029

    Article  Google Scholar 

  41. Lian S, Wang G, Zhou L, Yang D (2013) Fluorescence spectroscopic analysis on interaction of fleroxacin with pepsin. Luminescence 28:967–972

    Article  CAS  PubMed  Google Scholar 

  42. Zhang HM, Cao J, Fei ZH, Wang YQ (2012) Investigation on the interaction behavior between bisphenol A and pepsin by spectral and docking studies. J Mol Struct 1021:34–39

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 81330075 and No. 21172202), and 2013 Key science and technology plan project of Henan province (132102110051) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiyong Wang or Junbiao Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, Z., Yang, L. et al. Investigation of the Binding Between Pepsin and Nucleoside Analogs by Spectroscopy and Molecular Simulation. J Fluoresc 25, 451–463 (2015). https://doi.org/10.1007/s10895-015-1532-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1532-2

Keywords

Navigation