Skip to main content
Log in

Novel Twisted Intramolecular Charge Transfer (TICT) Extended Fluorescent Styryl Derivatives Containing Quinoline Electron Releasing Moiety

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Novel extended fluorescent styryl derivatives were synthesized from (E)-3-(2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)acrylaldehyde containing quinoline ring with 4-fluorophenyl ring at the 4-position as an electron donor and different active methylene compounds as electron acceptors by conventional Knoevenagel condensation reaction. The UV-Visible absorption and fluorescence emission spectra of the dyes were studied in solvents of differing polarity and the compounds showed polarity sensitive emission properties. The dyes were characterized by the spectral analysis. Thermogravimetric analysis showed these dyes are thermally stable up to 250 °C. Density Functional Theory computations have been used to derive more understanding of structural, molecular, electronic and photophysical parameters of the push-pull dyes. The computed absorption wavelength values are found to be in good agreement with the experimental results. The second order hyperpolarizability (β o) values were computed by Density Functional Theory and found to be in the range of 116.61 × 10−31 to 898.48 × 10−31 e.s.u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fox MA (1992) Introduction - electron transfer: a critical link between subdisciplines in chemistry. Chem Rev 92:365–368. doi:10.1021/cr00011a600

    Article  Google Scholar 

  2. Lakowicz JR (1994) Probe design and chemical sensing topics in fluorescence spectroscopy, 4th edn. 501–504

  3. Balaganesan B, Wen S-W, Chen CH (2003) Synthetic study of tetramethyljulolidine—a key intermediate toward the synthesis of the red dopant DCJTB for OLED applications. Tetrahedron Lett 44:145–147. doi:10.1016/S0040-4039(02)02506-6

    Article  CAS  Google Scholar 

  4. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791. doi:10.1126/science.270.5243.1789

    Article  CAS  Google Scholar 

  5. Gold H (1971) The chemistry of synthetic compounds, fluorescent brightening agents. Venkataraman K 535–679

  6. Shirota Y (2000) Organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25. doi:10.1039/A908130E

    Article  CAS  Google Scholar 

  7. Sonawane YA, Phadtare SB, Borse BN et al (2010) Synthesis of diphenylamine-based novel fluorescent styryl colorants by knoevenagel condensation using a conventional method, biocatalyst, and deep eutectic solvent. Org Lett 12:1456–1459. doi:10.1021/ol902976u

    Article  CAS  PubMed  Google Scholar 

  8. Gupta VD, Padalkar VS, Phatangare KR et al (2011) The synthesis and photo-physical properties of extended styryl fluorescent derivatives of N-ethyl carbazole. Dye Pigment 88:378–384. doi:10.1016/j.dyepig.2010.08.013

    Article  CAS  Google Scholar 

  9. Hranjec M, Kralj M, Piantanida I et al (2007) Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. J Med Chem 50:5696–5711. doi:10.1021/jm070876h

    Article  CAS  PubMed  Google Scholar 

  10. Zhang N, Zhao Y-Z, Zhang H-S, Wang H (2008) Sensitive determination of aliphatic amines by high-performance liquid chromatography with a new fluorogenic probe 3-(4-fluorinebenzoyl)-2-quinoline carboxaldehyde. J Sep Sci 31:38–46. doi:10.1002/jssc.200700341

    Article  PubMed  Google Scholar 

  11. Shiraishi Y, Ichimura C, Hirai T (2007) A quinoline–polyamine conjugate as a fluorescent chemosensor for quantitative detection of Zn(II) in water. Tetrahedron Lett 48:7769–7773. doi:10.1016/j.tetlet.2007.09.032

    Article  CAS  Google Scholar 

  12. Perin N, Hranjec M, Pavlović G, Karminski-Zamola G (2011) Novel aminated benzimidazo[1,2-a]quinolines as potential fluorescent probes for DNA detection: microwave-assisted synthesis, spectroscopic characterization and crystal structure determination. Dye Pigment 91:79–88. doi:10.1016/j.dyepig.2011.02.003

    Article  CAS  Google Scholar 

  13. Ohshima R, Kitamura M, Morita A et al (2009) Design and synthesis of a fluorescent probe for Zn2+, 5,7-Bis(N, N-dimethylaminosulfonyl)-8-hydroxyquinoline-pendant 1,4,7,10-tetraazacyclododecane and Zn2+−dependent hydrolytic and Zn2+−independent photochemical reactivation of its benzenesulfonyl-caged D. Inorg Chem 49:888–899. doi:10.1021/ic901279t

    Article  Google Scholar 

  14. Ou S, Lin Z, Duan C, et al. (2006) A sugar-quinoline fluorescent chemosensor for selective detection of Hg2+ ion in natural water. Chem Commun 4392–4394. doi: 10.1039/B607287A

  15. Mitscher LA (2005) Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 105:559–592. doi:10.1021/cr030101q

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Vince R (2008) Synthesis of pyrimidine and quinolone conjugates as a scaffold for dual inhibitors of HIV reverse transcriptase and integrase. Bioorg Med Chem Lett 18:1293–1296

    Article  CAS  PubMed  Google Scholar 

  17. Bhanot SK, Singh M, Chatterjee NR (2001) The chemical and biological aspects of fluoroquinolones reality and dreams. Curr Pharm Des 7:331–335. doi:10.2174/1381612013398059

    Article  Google Scholar 

  18. Baba Y, Saha G, Nakao S et al (2000) Asymmetric total synthesis of halicholactone. J Org Chem 66:81–88. doi:10.1021/jo001036c

    Article  Google Scholar 

  19. Boger DL, Hughes TV, Hedrick MP (2001) Synthesis, chemical properties, and biological evaluation of CC-1065 and duocarmycin analogues incorporating the 5-methoxycarbonyl-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one alkylation subunit. J Org Chem 66:2207–2216. doi:10.1021/jo001772g

    Article  CAS  PubMed  Google Scholar 

  20. Graham DW, Ashton WT, Barash L et al (1987) Inhibition of the mammalian.beta.-lactamase renal dipeptidase (dehydropeptidase-I) by Z-2-(acylamino)-3-substituted-propenoic acids. J Med Chem 30:1074–1090. doi:10.1021/jm00389a018

    Article  CAS  PubMed  Google Scholar 

  21. Tsuji T, Nishida S (1987) The chemistry of the cyclopropyl group. Wiley and sons, New York

    Google Scholar 

  22. Rappoport Z (1996) The chemistry of the cyclopropyl group. Wiley, New York

    Google Scholar 

  23. Salaün J (2000) Cyclopropane derivatives and their diverse biological activities. In: Meijere A (ed) Small ring compd. Org. Synth. VI SE - 1. Springer, Berlin

    Google Scholar 

  24. Ellis D, Kuhen KL, Anaclerio B et al (2006) Design, synthesis, and biological evaluations of novel quinolones as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 16:4246–4251. doi:10.1016/j.bmcl.2006.05.073

    Article  CAS  PubMed  Google Scholar 

  25. Fu H, Wu H, Hou X et al (2006) N-Aryl carbazole derivatives for non-doped red OLEDs. Synth Met 156:809–814. doi:10.1016/j.synthmet.2006.04.013

    Article  CAS  Google Scholar 

  26. Zhu W, Meng X, Yang Y et al (2010) Bisthienylethenes containing a benzothiadiazole unit as a bridge: photochromic performance dependence on substitution position. Chem Eur J 16:899–906. doi:10.1002/chem.200901855

    Article  CAS  PubMed  Google Scholar 

  27. Xia Z-Y, Zhang Z-Y, Su J-H et al (2010) Robust and highly efficient blue light-emitting hosts based on indene-substituted anthracene. J Mater Chem 20:3768–3774. doi:10.1039/C000092B

    Article  CAS  Google Scholar 

  28. Tan Y, Yu J, Gao J et al (2013) A new fluorescent and colorimetric probe for trace hydrazine with a wide detection range in aqueous solution. Dye Pigment 99:966–971. doi:10.1016/j.dyepig.2013.08.008

    Article  CAS  Google Scholar 

  29. Jamorski Jödicke C, Lüthi HP (2003) Time-dependent density functional theory (TDDFT) study of the excited charge-transfer state formation of a series of aromatic donor-acceptor systems. J Am Chem Soc 125:252–264. doi:10.1021/ja020361+

    Article  PubMed  Google Scholar 

  30. Gupta VD, Tathe AB, Padalkar VS et al (2013) Red emitting solid state fluorescent triphenylamine dyes: synthesis, photo-physical property and DFT study. Dye Pigment 97:429–439. doi:10.1016/j.dyepig.2012.12.024

    Article  CAS  Google Scholar 

  31. Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution ( IUPAC Technical Report ). Pure Appl Chem 83:2213–2228. doi:10.1351/PAC-REP-10-09-31

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09 C.01

  33. Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346

    Article  CAS  Google Scholar 

  34. Becke A (1993) A new mixing of Hartree-Fock and local density functional theories. J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley, Weinheim

    Book  Google Scholar 

  37. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York

    Book  Google Scholar 

  38. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335. doi:10.1016/0009-2614(96)00349-1

    Article  CAS  Google Scholar 

  39. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094. doi:10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  40. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108:1067–1071. doi:10.1039/AN9830801067

    Article  CAS  Google Scholar 

  41. Suzuki M, Iwasaki H, Fujikawa Y et al (2001) Synthesis and biological evaluations of quinoline-based HMG-CoA reductase inhibitors. Bioorg Med Chem 9:2727–2743. doi:10.1016/S0968-0896(01)00198-5

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki M, Yanagawa Y, Iwasaki H et al (1999) First systematic chiral syntheses of two pairs of enantiomers with 3,5-dihydroxyheptenoic acid chain, associated with a potent synthetic statin NK-104. Bioorg Med Chem Lett 9:2977–2982. doi:10.1016/S0960-894X(99)00519-3

    Article  CAS  PubMed  Google Scholar 

  43. Strehmel B, Rettig W (1996) Photophysical properties of fluorescence probes I: dialkylamino stilbazolium dyes. J Biomed Opt 1:98–109. doi:10.1117/12.227538

    Article  CAS  PubMed  Google Scholar 

  44. Gromov SP, Ushakov EN, Fedorova OA et al (2003) Novel photoswitchable receptors: synthesis and cation-induced self-assembly into dimeric complexes leading to stereospecific [2+2]-photocycloaddition of styryl dyes containing a 15-crown-5 ether unit. J Org Chem 68:6115–6125. doi:10.1021/jo034460x

    Article  CAS  PubMed  Google Scholar 

  45. Chen C-T, Chiang C-L, Lin Y-C et al (2003) Ortho-Substituent effect on fluorescence and electroluminescence of arylamino-substituted coumarin and stilbene. Org Lett 5:1261–1264. doi:10.1021/ol034268h

    Article  CAS  PubMed  Google Scholar 

  46. Vidya S, Ravikumar C, Hubert Joe I et al (2011) Vibrational spectra and structural studies of nonlinear optical crystal ammonium D, L-tartrate: a density functional theoretical approach. J Raman Spectrosc 42:676–684. doi:10.1002/jrs.2743

    Article  CAS  Google Scholar 

  47. Chunlong Z, Nianchun M, Liyun L (1993) An investigation of the thermal stability of some yellow and red azo pigments. Dye Pigment 23:13–23. doi:10.1016/0143-7208(93)80020-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors are greatly thankful to TIFR, SAIF-I.I.T. Mumbai for recording the 1H-NMR and Mass spectra. One of the authors Mininath S. Deshmukh is grateful to CSIR for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3.43 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, M.S., Sekar, N. Novel Twisted Intramolecular Charge Transfer (TICT) Extended Fluorescent Styryl Derivatives Containing Quinoline Electron Releasing Moiety. J Fluoresc 24, 1811–1825 (2014). https://doi.org/10.1007/s10895-014-1470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1470-4

Keywords

Navigation