Skip to main content
Log in

Novel hexapodal triazole linked to a cyclophosphazene core rhodamine-based chemosensor for selective determination of Hg2+ ions

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The hexapodal Rhodamine B derivative compound 3 containing a cyclotriphosphazene core was synthesized and characterized by spectroscopic techniques such as FT-IR, 1H, 13C and 31P NMR, HR-MS, MALDI MS and microanalysis. Compound 3 is a naked eye selective sensor with colorimetric and fluorescent properties for Hg2+ ions in the presence of other metal ions such as Na+, K+, Ca2+, Ba2+, Mg2+, Ag+, Mn2+, Cu2+, Ni2+, Co2+, Pb2+, Cd2+, Zn2+, Fe2+, Fe3+, and Cr3+. The optical sensor properties of compound 3 were investigated using UV–vis and fluorescence spectroscopy. The lowest detection limit of compound 3 was determined as 3.76 × 10−9 M (0.75 ppb) for Hg2+ ions. The stoichiometry of compound 3-Hg2+ complex was found to be 1:3 (ligand/metal ion). The reusable test strip was improved by the immobilization of compound 3 into a hydrogel network. The reusability of the sensor and test strip was tested with S2− ion solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta A, Vidyarthi SR, Sankararamakrishnan N (2014) Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J Hazard Mater 274:132–144

    Article  CAS  PubMed  Google Scholar 

  2. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercury ion. Chem Rew 108:3443–3480

    Article  CAS  Google Scholar 

  3. Borrell A, Aguilar A, Tornero V, Drago M (2014) Concentrations of mercury in tissues of striped dolphins suggest decline of pollution in Mediterranean open waste. Chemosphere 107:319–323

    Article  CAS  PubMed  Google Scholar 

  4. Guedron S, Tisserand D, Grambois S, Spadini L, Molton F, Bounvilay B, Charlet L, Polya DA (2014) Baseline investigation of (methyl) mercury in waters, solils, sediments and key foodstuffs in the Lower Mekong Basin: The rapidly developing city of Vientiane (Lao PDR). J Geochem Expl 143:96–102

    Article  CAS  Google Scholar 

  5. Cho JH, Eom Y, Lee TG (2014) Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes. J Hazard Mater 278:474–482

    Article  CAS  PubMed  Google Scholar 

  6. Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed population. Environ Res 77:68–72

    Article  CAS  PubMed  Google Scholar 

  7. Raimundo J, Pereira P, Vale C, Canario J, Gaspar M (2014) Relations between total mercury, methylmercury and selenium in five tissue of Sepia officinalis captured in the south Portuguese coast. Chemosphere 108:190–196

    Article  CAS  PubMed  Google Scholar 

  8. Li P, Feng XB, Qui GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: A review of the contaminated sites. J Hazard Mater 168:591–601

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Wu L, Liu H, Lan H, Qu J (2013) Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chem Eng J 228:925–934

    Article  CAS  Google Scholar 

  10. Shenashen MA, Elshehy EA, El-Safty SA, Khairy M (2013) Visual monitoring and removal of divalent copper, cadmium and mercury ions from water by using mesoporous cubic la3d aluminosilica sensors. Sep Purif Technol 116:73–86

    Article  CAS  Google Scholar 

  11. Wang W, Chen M, Chen X, Wang J (2014) Thiol-rich polyhedral oligomeric silsesquioxane as a novel adsorbent for mercury adsorption and speciation. Chem Eng J 242:62–68

    Article  CAS  Google Scholar 

  12. Punrat E, Chuanuwatanakul S, Kaneta T, Motomizu S, Chailapakul O (2014) Method development for the determination of mercury (II) by sequential injection/anodic stripping voltammetry using an in situ gold-film screen-printed carbon electrode. J Electroanal Chem 727:78–83

    Article  CAS  Google Scholar 

  13. Srungaram PK, Ayyalasomayajula KK, Yu-Yueh F, Sing JP (2013) Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils. Spectrochim Acta Part B 87:108–113

    Article  CAS  Google Scholar 

  14. Zmozinski AV, Carneado S, Palomino CI, Sahuquillo A, Sanchez JFL, Silva MM (2014) Method development for the simultaneous determination of methylmercury and inorganic mercury in seafood. Food Control 46:351–359

    Article  CAS  Google Scholar 

  15. Wang M, Zhang D, Li M, Fan M, Ye Y, Zhao Y (2013) A rhodamine-cyclen conjugate as chromogenic and fluorescent chemosensor for copper ion in aqueous media. J Fluoresc 23:417–423

    Article  CAS  PubMed  Google Scholar 

  16. Dong Z, Tian X, Chen Y, Hou J, Guo Y, Sun J, Ma J (2013) A highly selective fluorescent chemosensor for Hg2+ based on rhodamine B and its application as a molecular logic gate. Dyes Pigm 97:324–329

    Article  CAS  Google Scholar 

  17. Li KB, Zhang HL, Zhu B, He XP, Xie J, Chen GR (2014) A per-acetyl glycosyl rhodamine as a novel fluorescent ratiometric probe for mercury (II). Dyes Pigm 102:273–277

    Article  CAS  Google Scholar 

  18. Zhou X, Yan W, Zhao T, Tian Z, Wu X (2013) Rhodamine based derivative and its zinc complex: synthesis and recognition behavior toward Hg (II). Tetrahedron 69:9535–9539

    Article  CAS  Google Scholar 

  19. Huang W, Zhou P, Yan W, He C, Xiong L, Li F, Duan C (2009) A bright water-compatible sugar-rhodamine fluorescence sensor for selective detection of Hg2+ in natural water and living cells. J Environ Monit 11:330–335

    Article  CAS  PubMed  Google Scholar 

  20. Chu KH, Zhou Y, Fang Y, Wang LH, Li JY, Yao C (2013) Rhodamine-pyrene conjugated chemosensors for ratiometric detection of Hg2+ ions: Different sensing behavior between a spirolactone and a spirothiolactone. Dyes Pigm 98:339–346

    Article  CAS  Google Scholar 

  21. Cheng ZH, Li G, Zhang N, Liu HO (2014) A novel functionalized silver nanoparticles solid chemosensor for detection of Hg (II) in aqueous media. Dalton Trans 43:4762–4769

    Article  CAS  PubMed  Google Scholar 

  22. Huang W, Wu D, Wu G, Wang Z (2012) Dual functional rhodamine-immobilized silica toward sensing and extracting mercury ions in natural water samples. Dalton Trans 41:2620–2625

    Article  CAS  PubMed  Google Scholar 

  23. Allcock HR (2013) Generation of structural diversity in polyphosphazenes. Appl Organomet Chem 27:620–629

    Article  CAS  Google Scholar 

  24. Kagit R, Yildirim M, Ozay O, Yesilot S, Ozay H (2014) Phosphazene based multicentered naked-eye fluorescent sensor with high selectivity for Fe3+ ions. Inorg Chem 53:2144–2151

    Article  CAS  PubMed  Google Scholar 

  25. Caminade AM, Majoral JP (2013) Positively charged phosphorus dendrimers. An overview of their properties. New J Chem 37:3358–3373

    Article  CAS  Google Scholar 

  26. Badetti E, Lloveras V, Wurst K, Sebastian RM, Caminade AM, Majoral JP, Veciana J, Vidal-Gancedo J (2013) Synthesis and structural characterization of a dendrimer model compound based on a cyclotriphosphazene core with tempo radicals as substituents. Org Lett 15:3490–3493

    Article  CAS  PubMed  Google Scholar 

  27. Keller M, Colliere V, Reiser O, Caminade AM, Majoral JP, Ouali A (2013) Pyrene-tagged dendritic catalysts noncovalently grafted onto magnetic Co/C nanoparticles: An efficient and recyclable system for drug synthesis. Angew Chem Int Ed 52:3626–3629

    Article  CAS  Google Scholar 

  28. Ozay H, Ozay O (2014) Synthesis and characterization of drug microspheres containing phosphazene for biomedical applications. Colloids Surf A 450:99–105

    Article  CAS  Google Scholar 

  29. Bolink HJ, Santamaria SG, Sudhakar S, Zhen C, Sellinger A (2008) Solution processable phosphorescent dendrimers based on cyclic phosphazenes for use in organic light emitting diodes (OLEDs). Chem Commun 2008:618–620

    Article  Google Scholar 

  30. Zhang D, Li M, Jiang Y, Wang C, Wang Z, Ye Y (2013) A new sensitive and selective chromogenic and fluorescent chemodosimeter for Hg (II) in aqueeous media and its application in live cell imaging. Dyes Pigm 99:607–612

    Article  CAS  Google Scholar 

  31. Wang M, Yan F, Zou Y, Chen L, Yang N, Zhou X (2014) Recognition of Cu2+ in physiological conditions by a new rhodamine based dual channel fluorescent probe. Sens Actuators B 192:512–521

    Article  CAS  Google Scholar 

  32. Yan F, Cao D, Yang N, Wang M, Dai L, Li C, Chen L (2013) A rhodamine based fluorescent probe for Hg2+ and its application to cellular imaging. Spectrochim Acta Part A 106:19–24

    Article  CAS  Google Scholar 

  33. Wang M, Yan FY, Zou Y, Yang N, Chen L, Chen LG (2014) A rhodamine derivative as selective fluorescent and colorimetric chemosensor for mercury (II) in buffer solution, test strips and living cells. Spectrochim Acta Part A 123:216–223

    Article  CAS  Google Scholar 

  34. Bhalla V, Vij V, Tejpal R, Singh G, Kumar M (2013) Solvent dependent competition between fluorescence resonance energy transfer and through bond energy transfer in rhodamine appended hexaphenylbenzene derivatives for sensing of Hg2+ ions. Dalton Trans 42:4456–4463

    Article  CAS  PubMed  Google Scholar 

  35. Park S, Kim W, Swamy KMK, Lee HY, Jung JY, Kim G, Kim Y, Kim SJ, Yoon J (2013) Rhodamine hydrazone derivatives bearing thiophene group as fluorescent chemosensors for Hg2+. Dyes Pigm 99:323–328

    Article  CAS  Google Scholar 

  36. Mandal S, Banerjee A, Lohar S, Chattopadhyay A, Sarkar B, Mukhopadhyay SK, Sahana A, Das D (2013) Selective sensing of Hg2+ using rhodamine- thiophene conjugate: Red light emission and visual detection of intracellular Hg2+ at nanomolar level. J Hazard Mater 261:198–205

    Article  CAS  PubMed  Google Scholar 

  37. Wang HF, Wu SP (2013) Highly selective fluorescent sensors for mercury (II) ions and their applications in living cell imaging. Tetrahedron 69:1965–1969

    Article  CAS  Google Scholar 

  38. Li L-Q, Meng L-P (2014) A selective fluorescent sensor for Hg2+. J Fluoresc 24:301–303

    Article  CAS  Google Scholar 

  39. Ozay H, Ozay O (2013) Rhodamine based reusable and colorimetric naked-eye hydrogel sensors for Fe3+ ion. Chem Eng J 232:364–371

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project 112 T278).

Electronic supplementary material

The online version of this article contains supplementary material, which is available to authorized users.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hava Ozay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1085 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozay, H., Kagit, R., Yildirim, M. et al. Novel hexapodal triazole linked to a cyclophosphazene core rhodamine-based chemosensor for selective determination of Hg2+ ions. J Fluoresc 24, 1593–1601 (2014). https://doi.org/10.1007/s10895-014-1444-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1444-6

Keywords

Navigation