Skip to main content
Log in

Long Wavelength Fluorescence Ratiometric Zinc Biosensor

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A protein-based emission ratiometric fluorescence biosensor is described that exhibits sensitivity to free zinc ion in solution down to picomolar concentrations. Ratiometric measurements are widely used to assure accurate quantitation, and emission ratios are preferred for laser scanning microscopes such as confocal fluorescence microscopes. The relatively long emission wavelengths used are well suited to studies in tissues and other matrices which exhibit significant fluorescence background, and the apo-carbonic anhydrase moiety recognizes zinc ion with high and controllable specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE (1987) A quinoline fluorescence method for visualizing and assaying histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods 20:91–103

    Article  PubMed  CAS  Google Scholar 

  2. Zalewski PD, Forbes IJ, Betts WH (1993) Correlation of apoptosis with change in intracellular labile Zn(II) using Zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J 296:403–408

    PubMed  CAS  Google Scholar 

  3. Thompson RB, Patchan MW (1995) Lifetime-based fluorescence energy transfer biosensing of zinc. Anal Biochem 227:123–128

    Article  PubMed  CAS  Google Scholar 

  4. Thompson RB, Maliwal BP, Fierke CA (1998) Expanded dynamic range of free zinc ion determination by fluorescence anisotropy. Anal Chem 70(9):1749–1754

    Article  PubMed  CAS  Google Scholar 

  5. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T (2000) Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J Am Chem Soc 122:12399–12400

    Article  CAS  Google Scholar 

  6. Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJ (2001) Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution. (Translated from eng). J Am Chem Soc 123(32):7831–7841 (in eng)

    Article  PubMed  CAS  Google Scholar 

  7. Gee KR, Zhou ZL, Ton-That D, Sensi SL, Weiss JH (2002) Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium 31(5):245–251

    Article  PubMed  CAS  Google Scholar 

  8. White CE, Argauer RJ (1970) Fluorescence analysis: a practical approach. Marcel Dekker, Inc., New York), p 380

    Google Scholar 

  9. Fernandez-Gutierrez A, de la Munoz PA (1985) Determinations of inorganic substances by luminescence methods. In: Schulman SG (ed) Molecular luminescence spectroscopy, part i: methods and applications, chemical analysis: a series of monographs on analytical chemistry and its applications, vol 77. Wiley-Interscience, New York, pp 371–546

    Google Scholar 

  10. Burdette SC, Lippard SJ (2001) ICCC34-golden edition of coordination chemistry reviews. Coordination chemistry fro the neurosciences. Coord Chem Rev 216–217:333–361

    Article  Google Scholar 

  11. Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205–229

    Article  CAS  Google Scholar 

  12. Thompson RB et al (2011) Measurement and imaging of free and total zinc in biological specimens. In: Rink L (ed) Zinc in human health. IOS Press, Amsterdam, pp 163–191

    Google Scholar 

  13. Thompson RB, Zeng HH, Loetz M, & Fierke C (2000) Issues in enzyme-based metal ion biosensing in complex media. In: Cohn GE (ed) In-vitro diagnostic instrumentation, (SPIE), pp 120–127.

  14. Koike T, Watanabe T, Aoki S, Kimura E, Shiro M (1996) A Novel Biomimetic Zinc(II)−Fluorophore, Dansylamidoethyl−Pendant Macrocyclic Tetraamine 1,4,7,10-Tetraazacyclododecane (Cyclen). J Am Chem Soc 118(50):12696–12703

    Article  CAS  Google Scholar 

  15. Haugland RP (ed) (1996) Handbook of fluorescent probes and research chemicals, 6th edn. Molecular Probes, Inc, Eugene, p 679

    Google Scholar 

  16. Walkup GK, Burdette SC, Lippard SJ, Tsien RY (2000) A new cell-permeable fluorescent probe for Zn2+. J Am Chem Soc 122:5644–5645

    Article  CAS  Google Scholar 

  17. Thompson RB, Jones ER (1993) Enzyme-based fiber optic zinc biosensor. Anal Chem 65:730–734

    Article  CAS  Google Scholar 

  18. Walkup GK, Imperiali B (1997) Fluorescent chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization. J Am Chem Soc 119:3443–3450

    Article  CAS  Google Scholar 

  19. Jensen KK, Martini L, Schwartz TW (2001) Enhanced fluorescence resonance energy transfer between spectral variants of green fluorescent protein through zinc-site engineering. Biochemistry 40:938–945

    Article  PubMed  CAS  Google Scholar 

  20. Qiao W, Mooney M, Bird AJ, Winge DR, Eide DJ (2006) Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET. Proc Natl Acad Sci 103(23):8674–8679

    Article  PubMed  CAS  Google Scholar 

  21. Dongen EMWMV et al (2007) Variation of linker length in ratiometric fluorescent sensor proteins allows rational tuning of Zn(II) affinity in the picomolar to femtomolar range. J Am Chem Soc 129:3494–3495

    Article  PubMed  Google Scholar 

  22. Qin Y, Dittmer PJ, Park JG, Jansen KB, & Palmer AE (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci

  23. Hurst TK, Wang D, Thompson RB, Fierke CA (2010) Carbonic anhydrase II-based metal ion sensing: advances and new perspectives. Biochim Biophys Acta (BBA)—Proteins Proteomics 1804(2):393–403

    Article  CAS  Google Scholar 

  24. Kiefer LL, Ippolito JA, Fierke CA, Christianson DW (1993) Redesigning the zinc binding siteof human carbonic anhydrase II: structure of a His2Asp-Zn2+ metal coordination polyhedron. J Am Chem Soc 115:12581–12582

    Article  CAS  Google Scholar 

  25. Kiefer LL, Paterno SA, Fierke CA (1995) Hydrogen bond network in the metal binding site of carbonic anhydrase enhances zinc affinity and catalytic efficiency. J Am Chem Soc 117:6831–6837

    Article  CAS  Google Scholar 

  26. Hunt JA, Ahmed M, Fierke CA (1999) Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic amino acids. Biochemistry 38:9054–9060

    Article  PubMed  CAS  Google Scholar 

  27. C-c H, Lesburg CA, Kiefer LL, Fierke CA, Christianson DW (1996) Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II. Biochemistry 35(11):3439–3446

    Article  Google Scholar 

  28. Fierke CA, Thompson RB (2001) Fluorescence-based biosensing of zinc using carbonic anhydrase. Biometals 14(3–4):205–222

    Article  PubMed  CAS  Google Scholar 

  29. Yang L, Ellington AD (2005) Prospects for the de novo design of nucleic acid biosensors. In: Thompson RB (ed) Fluorescence sensors and biosensors. CRC Press, Boca Raton

    Google Scholar 

  30. Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1(2):103–111

    Article  PubMed  CAS  Google Scholar 

  31. Wang D, Hurst TK, Thompson RB, & Fierke CA (2011) Genetically encoded ratiometric biosensors to measure extracellular exchangeable zinc in Escherichia coli. J Biomed Opt 16(8):087011–087011 - 087011–087011

    Google Scholar 

  32. McCranor BJ et al (2012) Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. (Translated from eng). J Bioenerg Biomembr 44(2):253–263 (in eng)

    Article  PubMed  CAS  Google Scholar 

  33. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of calcium indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    PubMed  CAS  Google Scholar 

  34. Wolfbeis OS (1985) The fluorescence of organic natural products. In: Schulman SG (ed) Molecular luminescence spectroscopy methods and applications: part i, chemical analysis: a series of monographs on analytical chemistry and its applications. Wiley-Interscience, New York, pp 167–370

    Google Scholar 

  35. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron QE-26:2166–2185

    Article  Google Scholar 

  36. Thompson RB (1994) Red and near-infrared fluorometry. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy vol. 4: probe design and chemical sensing, vol 4. Plenum Press, New York, pp 151–181

    Google Scholar 

  37. Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33

    Article  PubMed  CAS  Google Scholar 

  38. Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug Chem 4(2):105–111

    Article  PubMed  CAS  Google Scholar 

  39. Narayanan N, Patonay G (1995) A New Method for the Synthesis of Heptamethine Cyanine Dyes: Synthesis of New Near-Infrared Fluorescent Labels. J Org Chem 60(8):2391–2395

    Article  CAS  Google Scholar 

  40. Terpetschnig E, Szmacinski H, Ozinskas A, Lakowicz JR (1994) Synthesis of squaraine-N-hydroxysuccinimide esters and their biological application as long-wavelength fluorescent labels. Anal Biochem 217(2):197–204

    Article  PubMed  CAS  Google Scholar 

  41. Zeng HH et al (2003) Real-time determination of picomolar free Cu(II) in seawater using a fluorescence-based fiber optic biosensor. Anal Chem 75(24):6807–6812

    Article  PubMed  CAS  Google Scholar 

  42. Bozym R et al (2008) Determination of zinc using carbonic anhydrase-based fluorescence biosensors. In: Brand L, Johnson M (eds) Fluorescence spectroscopy, methods in enzymology, vol 450. Academic Press, San Diego, pp 287–309

    Chapter  Google Scholar 

  43. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  PubMed  CAS  Google Scholar 

  44. Zeng H-H, et al (2005) In situ measurement of free zinc in an ischemia model and cell culture using a ratiometric fluorescence-based biosensor. In: Vo-Dinh T, Grundfest WS, Benaron DA, & Cohn GE (eds), SPIE Conference on Advanced Biomedical and CLinical Diagnostic Systems III, (SPIE), pp 51–59

  45. Kiyose K, Kojima H, Urano Y, Nagano T (2006) Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. J Am Chem Soc 128:6548–6549

    Article  PubMed  CAS  Google Scholar 

  46. McCranor B et al (2012) Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. J Bioenerg Biomembr 44(2):253

    Article  PubMed  CAS  Google Scholar 

  47. Tomat E, Nolan EM, Jaworski J, Lippard SJ (2008) Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J Am Chem Soc 130(47):15776

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Institutes of Health (NIH RO1 EB003924) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H.H., Matveeva, E.G., Stoddard, A.K. et al. Long Wavelength Fluorescence Ratiometric Zinc Biosensor. J Fluoresc 23, 375–379 (2013). https://doi.org/10.1007/s10895-013-1161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1161-6

Keywords

Navigation