Skip to main content

Advertisement

Log in

Studies on Curcumin and Curcuminoids. XLVI. Photophysical Properties of Dimethoxycurcumin and Bis-dehydroxycurcumin

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The steady-state absorption and fluorescence, as well as the time-resolved fluorescence properties of dimethoxycurcumin and bis-dehydroxycurcumin dissolved in several solvents differing in polarity and H-bonding capability are presented. The singlet oxygen generation efficiency of the two compounds relative to curcumin is estimated. The photodegradation quantum yield of the former compound in acetonitrile and methanol is determined. The dimethoxycurcumin and bis-dehydroxycurcumin decay mechanisms from the S 1 state are discussed and compared with those of curcumin, dicinnamoylmethane and bis-demethoxycurcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mukhopadhyay A, Basu N, Ghatak N, Gujzal PK (1982) Anti-inflammatory and irritant activities of curcumin analogs in rats. Agents Actions 12:508–515

    Article  PubMed  CAS  Google Scholar 

  2. Srimal RC, Dhawan BN (1973) Pharmacology of di-ferulyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25:447–452

    Article  PubMed  CAS  Google Scholar 

  3. Rao T, Basu N, Ghatak N, Gujral PK (1982) Anti-inflammatory activity of curcumin analogs. Indian J Med Res 75:574–578

    PubMed  CAS  Google Scholar 

  4. Khafif A, Schantz SP, Chou TC, Edelstein D, Sacks PG (1998) Quantification of chemopreventive synergism between epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 19:419–424

    Article  PubMed  CAS  Google Scholar 

  5. Leu TH, Maa MC (2002) The molecular mechanisms for the antitumorigenic effect of curcumin. Curr Med Chem 2:357–370

    CAS  Google Scholar 

  6. Woo J, Kim Y, Choi Y, Kim D, Lee K, Bae JH, Chang DS, Jeong YJ, Lee YH, Park J, Kwon TK (2003) Molecular mechanisms of curcumin-induced cyclotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24:1199–1208

    Article  PubMed  CAS  Google Scholar 

  7. Moos PJ, Edes K, Mullally J, Fitzpatrick J (2004) Curcumin impairs tumor suppressor p53 function in colon cancer cells. Carcinogenesis 9:1611–1617

    Article  Google Scholar 

  8. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen P, Kayed R, Glabe CG, Frautschy SA, Cole GM (2004) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  PubMed  Google Scholar 

  9. Egan ME, Pearson M, Weiner SA, Rajendarn V, Rubin D, Glochner-Pagel J, Canney S, Du K, Lukacs GL, Caplan MF (2004) Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304:600–602

    Article  PubMed  CAS  Google Scholar 

  10. Aggrawal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75

    Article  Google Scholar 

  11. Mazumder A, Neamati N, Sunder S, Schulz J, Perez H, Aich E, Pommier Y (1997) Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. J Med Chem 40:3057–3063

    Article  PubMed  CAS  Google Scholar 

  12. Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano PR (1993) Inhibition of the HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg Med Chem 1:415–422

    Article  PubMed  CAS  Google Scholar 

  13. Bruzell E, Morisbak E, Tønnesen HH (2005) Studies on curcumin and curcuminoids. XXIX. Photoinduced cytotoxicity of curcumin in selected aqueous preparations. Photochem Photobiol Sci 4:523–530

    Article  PubMed  CAS  Google Scholar 

  14. Dahl TA, Bilski P, Reszka KJ, Chignell CF (1994) Photocytotoxicity of curcumin. Photochem Photobiol 59:290–294

    Article  PubMed  CAS  Google Scholar 

  15. Dahl TA, Mcgowan WM, Shand MA, Srinivasan VS (1989) Photokilling of bacteria by the natural dye curcumin. Arch Microbiol 151:183–185

    Article  PubMed  CAS  Google Scholar 

  16. Tonnesen HH, de Vries H, Karlsen J, van Henegouwen GB (1987) Studies on curcumin and curcuminoids IX: investigation of the photobiological activity of curcumin using bacterial indicator systems. J Pharm Sci 76:371–373

    Article  PubMed  CAS  Google Scholar 

  17. Haukvik T, Bruzell E, Kristensen S, Tønnesen HH (2009) Photokilling of bacteria by curcumin in different aqueous preparations. Studies on curcumin and curcuminoids. XXXVII. Pharmazie 64:666–673

    PubMed  CAS  Google Scholar 

  18. Haukvik T, Bruzell E, Kristensen S, Tønnesen HH (2010) Photokilling of bacteria by curcumin in selected polyethylene glycol 400 (PEG 400) preparations. Studies on curcumin and curcuminoids XLI. Pharmazie 65:600–606

    PubMed  CAS  Google Scholar 

  19. Haukvik T, Bruzell E, Kristensen S, Tønnesen HH (2011) A screening for antibacterial phototoxic effects of curcumin derivatives. Studies on curcumin and curcuminoids. XLIII. Pharmazie 66:69–74

    PubMed  CAS  Google Scholar 

  20. Chignell CF, Bilski P, Reszka KJ, Motton AG, Sik RH, Dahl TA (1994) Spectral and photochemical properties of curcumin. Photochem Photobiol 59:295–302

    Article  PubMed  CAS  Google Scholar 

  21. Nardo L, Paderno R, Andreoni A, Haukvik T, Màsson M, Tønnesen HH (2008) Studies on curcumin and curcuminoids XXXII. Role of H-bond formation in the photoreactivity of curcumin. Spectroscopy 22:187–198

    CAS  Google Scholar 

  22. Nardo L, Andreoni A, Bondani M, Màsson M, Tønnesen HH (2009) Studies on curcumin and curcuminoids XXXIV. Photophysical properties of a symmetrical, non-substituted curcumin analogue. J Photochem Photobiol B: Biol 97:77–86

    Article  CAS  Google Scholar 

  23. Nardo L, Andreoni A, Haukvik T, Màsson M, Tønnesen HH (2011) Studies on curcumin and curcuminoids XXXIX. Photophysical properties of bisdemethoxycurcumin. J Fluorescence 21:627–635

    Article  CAS  Google Scholar 

  24. Gilli G, Bertolasi V (1990) In: Rappoport Z (ed) The chemistry of enols. Wiley, New York, pp 713–764

    Google Scholar 

  25. Tønnesen HH, Karlsen J, van Henegouwen GB (1986) Studies on curcumin and curcuminoids. VIII. Photochemical stability of curcumin. Z Lebensm Unters Forsch 183:116–122

    Article  PubMed  Google Scholar 

  26. Sundaryono A, Nourmamode A, Gardrat C, Grelier S, Bravic G, Chasseau D, Castellan A (2003) Studies on the photochemistry of 1,7-dipehnyl-1,6-heptadiene-3,5-dione, a non-phenolic curcuminoid model. Photochem Photobiol Sci 2:914–920

    Article  PubMed  CAS  Google Scholar 

  27. Emsley J (1984) In: Clarke MJ, Goodenough JB, Ibers JA, Jørgensen CK, Mingos DMP, Neilands JB, Reinen D, Sadler PJ, Weiss R, Williams RJP (eds) Structure and bonding. Springer Verlag, Berlin, pp 148–191

    Google Scholar 

  28. Strandjord AJG, Courtney SH, Friedrich DM, Barbara PF (1983) Excited-state dynamics of 3-hydroxyflavone. J Phys Chem 87:1125–1133

    Article  CAS  Google Scholar 

  29. Weedon AC (1990) In: Rappoport Z (ed) The chemistry of enols. Wiley, New York, pp 591–638

    Google Scholar 

  30. Nikolov P, Fratev F, Petkov I, Markov P (1981) Dimer fluorescence of some β-dicarbonyl compounds. Chem Phys Lett 83:170–173

    Article  CAS  Google Scholar 

  31. Tønnesen HH, Karlsen J, Mostad A (1982) Structural studies of curcuminoids. I. The crystal structure of curcumin. Acta Chem Scand B 36:475–479

    Article  Google Scholar 

  32. Tonnesen HH, Karlsen J, Mostad A, Pedersen U, Rasmussen PB, Lawesson SO (1983) Structural studies of curcuminoids. II. Crystal structure of 1,7-Bis(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione – Methanol complex. Acta Chem Scand B 37:179–185

    Article  Google Scholar 

  33. Tonnesen HH, Karlsen J, Mostad A, Pedersen U, Rasmussen PB, Lawesson SO (1988) Structural studies of curcuminoids. IV. Crystal structure of 1,7-Bis(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione Hydrate. Acta Chem Scand B 42:23–27

    Google Scholar 

  34. Mostad A, Pedersen U, Rasmussen PB, Lawesson SO (1983) Structural studies on curcuminoids. III. Crystal structure of 1,7-diphenyl-1,5-heptadiene-3,5-dione. Acta Chem Scand B 37:901–905

    Article  Google Scholar 

  35. Gorbitz CH, Mostad A, Pedersen U, Rasmussen PB, Lawesson SO (1986) Structural studies on curcuminoids. V. Crystal structures of 1,7-bis(3,4-dimethoxyphenyl)-4-benzyl-1,6-heptadiene-3,5-dione (DDBHDD) and 1,7-bis(4-hydroxy-3-methoxy-phenyl)-4-(2-oxo-2-ethoxyethyl)-1,6-heptadiene-3,5-dione (DHMEDD). Acta Chem Scand B 40:420–429

    Article  Google Scholar 

  36. Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195

    Article  CAS  Google Scholar 

  37. Toullec J (1990) In: Rappoport Z (ed) The chemistry of enols. Wiley, New York, pp 324–398

    Google Scholar 

  38. Semenov SG, Khodyreva NV (1994) Theoretical study of electron-donor and spectroscopic properties pf substituted phenols in various solvents. J Mol Struct 337:89–97

    Google Scholar 

  39. Tomren MA, Màsson M, Loftsson T, Tønnesen HH (2007) Studies on curcumin and curcuminoids. XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm 338:27–34

    Article  PubMed  CAS  Google Scholar 

  40. Velapoldi R, Tønnesen HH (2004) Corrected fluorescence spectra and quantum yields for a series of compounds in the visible spectral region. J Fluorescence 14:465–472

    Article  CAS  Google Scholar 

  41. Nardo L, Bondani M, Andreoni A (2008) DNA-ligand binding mode discrimination by characterizing fluorescence resonance energy transfer through lifetime measurements with picosecond resolution. Photochem Photobiol 84:101–110

    PubMed  CAS  Google Scholar 

  42. Moore DE (2004) In: Tønnesen HH (ed) Photostability of drugs and drug formulations. CRC, Boca Raton, pp 49–53

    Google Scholar 

  43. Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887

    Article  CAS  Google Scholar 

  44. Balasubramanian K (2006) Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J Agric Food Chem 54:3512–3520

    Article  PubMed  CAS  Google Scholar 

  45. Pedersen U, Rasmussen PB, Lawesson SO (1985) Synthesis of naturally occurring curcuminoids and related compounds. Liebigs Ann Chem 8:1557–1569

    Article  Google Scholar 

  46. Ortica F, Rodgers MAJ (2001) A laser flash photolysis study of curcumin in dioxane-water mixtures. Photochem Photobiol 74:745–751

    PubMed  CAS  Google Scholar 

  47. Galasso V, Kovac B, Modelli A, Ottaviani MF, Pichierri F (2008) Spectroscopic and theoretical study of the electronic structure of curcumin and related fragment molecules. J Phys Chem A 112:2331–2338

    Article  PubMed  CAS  Google Scholar 

  48. Wright JS (2002) Predicting the antioxidant activity of curcumin and curcuminoids. J Mol Struct (THEOCHEM) 591:207–217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Nardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nardo, L., Andreoni, A., Bondani, M. et al. Studies on Curcumin and Curcuminoids. XLVI. Photophysical Properties of Dimethoxycurcumin and Bis-dehydroxycurcumin. J Fluoresc 22, 597–608 (2012). https://doi.org/10.1007/s10895-011-0995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0995-z

Keywords

Navigation