Skip to main content
Log in

Determination of Paracetamol Based on its Quenching Effect on the Photoluminescence of CdTe Fluorescence Probes

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

L-Cysteine capped CdTe nanoparticles (NPs) were synthesized in aqueous medium, and their application as fluorescence probes in the determination of paracetamol was studied. The L-cysteine capped CdTe NPs were characterized by transmission electron microscopy, X-ray diffraction spectrometry, spectrofluorometry, ultraviolet-visible and Fourier transform infrared spectrometry. Based on the distinct fluorescence quenching of CdTe fluorescence probes in the presence of paracetamol, a simple, rapid and specific method for paracetamol determination was presented. Under optimum conditions, the relative fluorescence intensity of CdTe NPs was linearly proportional to paracetamol concentration from 1.0 × 10−8 mol/L to 1.6 × 10−7 mol/L with a detection limit of 4.2 × 10−9 mol/L. The proposed method was applied to detect paracetamol in commercial tablets with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ozcan A, Sahin Y (2011) A novel approach for the determination of paracetamol based on the reduction of N-acetyl-p-benzoquinoneimine formed on the electrochemically treated pencil graphite electrode. Anal Chim Acta 685:9–14

    Article  PubMed  Google Scholar 

  2. Zhang Y, Luo LQ, Ding YP, Liu XA, Qian ZY (2010) A highly sensitive method for determination of paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchim Acta 171:133–138

    Article  CAS  Google Scholar 

  3. Babaei A, Garrett DJ, Downard AJ (2011) Selective simultaneous determination of paracetamol and uric acid using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanal 23:417–423

    Article  CAS  Google Scholar 

  4. Goyal RN, Gupta VK, Chatterjee S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensor Actuat B-Chem 149:252–258

    Article  Google Scholar 

  5. Kalimuthu P, John SA (2010) Selective electrochemical determination of paracetamol using nanostructured film of functionalized thiadiazole modified electrode. Electroanal 22:303–309

    Article  CAS  Google Scholar 

  6. Gandhi SV, Ranher SS, Deshpande PB, Shah DK (2011) Simultaneous HPTLC determination of nabumetone and paracetamol in combined tablet dosage form. J Brazil Chem Soc 22:1068–1072

    Article  CAS  Google Scholar 

  7. Ravisankar S, Vasudevan M, Gandhimathi M, Suresh B (1998) Reversed-phase HPLC method for the estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations. Talanta 46:1577–1581

    Article  PubMed  CAS  Google Scholar 

  8. Lou HG, Yuan H, Ruan ZR, Jiang B (2010) Simultaneous determination of paracetamol, pseudoephedrine, dextrophan and chlorpheniramine in human plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B 878:682–688

    Article  CAS  Google Scholar 

  9. Hewavitharana AK, Lee S, Dawson PA, Markovich D, Shaw PN (2008) Development of an HPLC-MS/MS method for the selective determination of paracetamol metabolites in mouse urine. Anal Biochem 374:106–111

    Article  PubMed  CAS  Google Scholar 

  10. Zhao SL, Bai WL, Yuan HY, Xiao D (2006) Detection of paracetamol by capillary electrophoresis with chemiluminescence detection. Anal Chim Acta 559:195–199

    Article  CAS  Google Scholar 

  11. Lourencao BC, Medeiros RA, Rocha RC, Mazo LH, Fatibello O (2009) Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta 78:748–752

    Article  PubMed  CAS  Google Scholar 

  12. Easwaramoorthy D, Yu YC, Huang HJ (2001) Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Anal Chim Acta 439:95–100

    Article  CAS  Google Scholar 

  13. Sirajuddin AR, Khaskheli A, Shah ML, Bhanger AN, Mahesar S (2007) Simpler spectrophotometric assay of paracetamol in tablets and urine samples. Spectrochim Acta A 68:747–751

    Article  CAS  Google Scholar 

  14. Al-Zoubi N, Koundourellis JE, Malamataris S (2002) FT-IR and Raman spectroscopic methods for identification and quantitation of orthorhombic and monoclinic paracetamol in powder mixes. J Pharmaceut Biomed 29:459–467

    Article  CAS  Google Scholar 

  15. Kachoosangi RT, Wildgoose GG, Compton RG (2008) Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal Chim Acta 618:54–60

    Article  PubMed  CAS  Google Scholar 

  16. Li L, Bian RX, Ding YP, Yu ML, Yu DW (2009) Application of functionalized ZnS nanoparticles to determinate uracil and thymine as a fluorescence probe. Mater Chem Phys 113:905–908

    Article  CAS  Google Scholar 

  17. Vinayaka AC, Thakur MS (2010) Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal Bioanal Chem 397:1445–1455

    Article  PubMed  CAS  Google Scholar 

  18. Wang GL, Dong YM, Yang HX, Li ZJ (2011) Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots. Talanta 83:943–947

    Article  PubMed  CAS  Google Scholar 

  19. Cao M, Cao C, Liu MG, Wang P, Zhu CQ (2009) Selective fluorometry of cytochrome c using glutathione-capped CdTe quantum dots in weakly basic medium. Microchim Acta 165:341–346

    Article  CAS  Google Scholar 

  20. Fei XN, Gu YC, Wang J, Jia GZ, Liu ZJ (2011) Preparation and fluorescent properties of a complex probe based on inorganic QDs and organic dye. J Lumin 131:291–296

    Article  CAS  Google Scholar 

  21. Xu H, Miao R, Fang Z, Zhong XH (2011) Quantum dot-based “turn-on” fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal Chim Acta 687:82–88

    Article  PubMed  CAS  Google Scholar 

  22. Frasco MF, Chaniotakis N (2010) Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 396:229–240

    Article  PubMed  CAS  Google Scholar 

  23. Zhao WF, Fung YS, O W, Cheung MPL (2010) L-cysteine-capped CdTe quantum dots as a fluorescence probe for determination of cardiolipin. Anal Sci 26:879–884

    Article  PubMed  CAS  Google Scholar 

  24. Kuang R, Kuang X, Pan SY, Zheng XD, Duan JC, Duan YQ (2010) Synthesis of cysteamine-coated CdTe quantum dots for the detection of bisphenol A. Microchim Acta 169:109–115

    Article  CAS  Google Scholar 

  25. Wang GL, Dong YM, Yang HX, Li ZJ (2011) Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots. Talanta 83:943–947

    Article  PubMed  CAS  Google Scholar 

  26. Priyam A, Chatterjee A, Das SK, Saha A (2005) Synthesis and spectral studies of cysteine-capped CdS nanoparticles. Res Chem Intermed 31:691–702

    Article  CAS  Google Scholar 

  27. Li MY, Zhou HM, Zhang HY, Sun P, Yi KY, Wang M, Dong ZZ, Xu SK (2010) Preparation and purification of L-cysteine capped CdTe quantum dots and its self-recovery of degenerate fluorescence. J Lumin 130:1935–1940

    Article  CAS  Google Scholar 

  28. Diao XL, Xia YS, Zhang TL, Li Y, Zhu CQ (2007) Fluorescence-detecting cationic surfactants using luminescent CdTe quantum dots as probes. Anal Bioanal Chem 388:1191–1197

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 20975066, No. 41140031), the Nano-Foundation of Science and Techniques Commission of Shanghai Municipality (No. 0952nm01500), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (No. J50102), and the Graduate Innovation Foundation of Shanghai University (SHUCX112027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Lu, Y., Ding, Y. et al. Determination of Paracetamol Based on its Quenching Effect on the Photoluminescence of CdTe Fluorescence Probes. J Fluoresc 22, 591–596 (2012). https://doi.org/10.1007/s10895-011-0994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0994-0

Keywords

Navigation