Skip to main content
Log in

A Fluorescence Study of New Angular Polycyclic Blue Light-Emitting pyrazolo[3,4-h][1,6]naphthyridine and their Interaction with Bovine Serum Albumin (BSA)

  • Rapid Communication
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The blue light-emitting pyrazolo[3,4-h][1,6]naphthyridines has been synthesized by Friedländer condensation of 4-amino-3-(4-phenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbaldehyde (o-aminoaldehyde) 1 with different cyclic ketones and 1,3-diketones. The synthesized angular polycyclic naphthyridine derivatives were studied for Semi-empirical, thermal, UV–vis and fluorescence spectroscopic properties on binding with bovin serum albumin (BSA). These fluorescence properties together with the neutral, hydrophobic nature of these compounds make these fluorophores good fluorescence probe for studying the micropolarity of proteins like BSA and in general the ligand-protein interactions. All of them displays bright absorption at 394 nm & emission in visible region (491 nm). Quantum yields of all synthesized compounds were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Dresner J (1969) RCA Rev 30:322

    CAS  Google Scholar 

  2. Drexhage KH (1977) Structure and properties of laser dyes. In: Schafer FP (ed) Topics in applied physics: dye lasers, vol. 1. Springer, New York, p 144

    Google Scholar 

  3. Gold H (1971) In: Venkataraman K (ed) The chemistry of synthetic deyes, vol. 5. Academic, New York, p 535

    Google Scholar 

  4. Hosokawa C, Higashi H, Nakamura H, Kusumoto T (1995) Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant. Appl Phys Lett 67:3853

    Article  CAS  Google Scholar 

  5. Tao TX, Suzuki H, Wada T, Sasabe H, Miyata S (1999) Lithium tetra-(8-hydroxy-quinolinato) boron for blue electroluminescent applications. Appl Phys Lett 75:1655

    Article  CAS  Google Scholar 

  6. Gao Z, Lee SC, Bello I, Lee TS, Chen MR, Luh YT, Shi J, Tang WC (1999) Bright-blue electroluminescence from a silyl-substituted ter-(phenylene-vinylene) derivative. Appl Phys Lett 74:865

    Article  CAS  Google Scholar 

  7. Tamoto N, Adachi C, Nagai K (1997) Electroluminescence of 1,3,4-Oxadiazole and triphenylamine-containing molecules as an emitter in organic multilayer light emitting diodes. Chem Mater 9:1077

    Article  CAS  Google Scholar 

  8. Leung ML, Lo YW, So KS, Choi KW (2000) A high-efficiency blue emitter for a small molecule-based organic light emitting diods. J Am Chem Soc 122:5640

    Article  CAS  Google Scholar 

  9. Chan LH, Yeh CH, Chen TC (2001) Blue light-emitting devices based on molecular glass materials of tetraphenylsilane compounds. Adv Mater 13:1637

    Article  CAS  Google Scholar 

  10. Kim HY, Shin CD, Kim HS, Ko HC, Yu SH, Chae SY, Kwon KS (2001) Novel blue emitting material with high color purity. Adv Mater 13:1690

    Article  CAS  Google Scholar 

  11. Tokido S, Tanaka H, Noda K, Okada A, Taga T (1997) Thermal stability in oligomeric triphenylamin/tris(8-quinolinolato) aluminum electroluminescent devicese. Appl Phys Lett 70:1929

    Article  Google Scholar 

  12. Han E, Do L, Niidome Y, Fujihira M (1994) Observation of crystallization of vapor-deposited TPD films by AFM and FFM. Chem Lett 969

  13. Fenter P, Schreiber F, Buloviae V, Forrest RS (1997) Thermally induced failure mechanisms of organic light emitting device structures probed by X-ray specular reflectivity. Chem Phys Lett 277:521

    Article  CAS  Google Scholar 

  14. Hann RA, Bloor D (eds) (1991) Organic material for nonlinear optics II. Royal Society of Chemistry, Cambridge

    Google Scholar 

  15. Kanbara H, Asobe M, Kubidera K, Kaino T (1992) All optical picosecond switch using organic single mode fiber waveguide. Appl Phys Lett 61:2292

    Article  Google Scholar 

  16. Duarte FJ (1994) Solid-state multiple-prism grating dye-laser oscillators. Appl Opt 33:3857

    Article  PubMed  CAS  Google Scholar 

  17. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913

    Article  CAS  Google Scholar 

  18. Burroughs JH, Bradley DDC, Holmes AR (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539

    Article  Google Scholar 

  19. Bian H, Zhang H, Yu Q, Chen Z, Liang H (2007) Studies on the interaction of cinnamic acid with bovine serum albumin. Chem Pharm Bull 55(6):871–875

    Article  PubMed  CAS  Google Scholar 

  20. Jiang M, Xie MX, Zheng D, Liu Z, Li XY, Chen X (2004) Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J Mol Struct 692(1–2):71–80

    Google Scholar 

  21. Kang J, Liu Y, Xie MX, Li S, Jiang M, Wang YD (2004) Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochimica et Biophysica Acta 1674(2):205–214

    PubMed  CAS  Google Scholar 

  22. Peters T (1996) All about albumin: biochemistry, genetics, and medical applications. Academic, San Diego

    Google Scholar 

  23. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  24. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33(1):17–53

    PubMed  CAS  Google Scholar 

  25. Jachak MN, Bagul SM, Ghotekar BK, Toche RB (2009) Synthesis and study of fluorescent behavior of new 3- pyridinecarbonitriles. Monatsh Chemie 140:655

    Article  CAS  Google Scholar 

  26. Rane BS, Kazi MA, Bagul SM, Shelar DP, Toche RB, Jachak MN (2010) Synthesis of novel spiro-oxazino-quinoline derivatives and study of their photophysical properties. J Fluoresc 20:415–420. doi:10.1007/s10895-009-0557-9

    Article  PubMed  CAS  Google Scholar 

  27. Rote RR, Shelar DP, Patil SR, Shinde SS, Toche RB, Jachak MN (2010) Effect of donor-acceptor chromophores on photophysical properties of newly synthesized Pyrazolo-pyrrolo-pyrimidines (PPP). J Fluoresc. doi:10.1007/s10895-010-0704-3

  28. Patil SR, Shelar DP, Rote RR, Toche RB, Jachak MN (2011) Effect of specific solute-solvent interaction and electron donor-acceptor substituents of novel pyrazolo-naphthyridines on fluorescence. J Fluoresc 21:461–471. doi:10.1007/s10895-010-0707-0

    Article  PubMed  CAS  Google Scholar 

  29. Peters T (1985) Serum albumin. Jr Adv Prot Chem 37:161–245

    Article  CAS  Google Scholar 

  30. Pearson R (1989) Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem 54:1423

    Article  CAS  Google Scholar 

  31. Zhou Z, Parr R (1989) New measures of aromaticity: absolute hardness and relative hardness. J Am Chem Soc 111:7371

    Article  CAS  Google Scholar 

  32. Zhou Z, Parr R (1990) Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112:5720

    Article  CAS  Google Scholar 

  33. Diener M, Alford J (1998) Isolation and properties of small-bandgap fullerenes. Nature 393:668

    Article  CAS  Google Scholar 

  34. Zollinger H (2003) Color chemistry, 3 rd edn. Switzerland Page No.479

  35. Stewart JJP (1989) J Comput Chem 10:209

    Article  CAS  Google Scholar 

  36. Stewart JJP (1989) J Comput Chem 10:221

    Article  CAS  Google Scholar 

  37. Stewart JJP (2001) MOPAC 2002 manual. Fujitsu Limited, Tokyo

    Google Scholar 

  38. Spreitzer H, Schenk H, Salbeck J, Weissörtel F, Riel H, Riess W (1999) Temperature stability of OLEDs using amorphous compounds with spiro-bifluorene core. Proc SPIE Int Soc Opt Eng 316:3797

    Google Scholar 

  39. Lakowicz J (1999) Principals of fluorescence spectroscopy, 2nd ed. New York, pp 52–53

  40. Fletecher AN (1669) Quinine sulfate as a fluorescence quantum yield standard. Phot Chem Photo Biol 9(5):439–444

    Article  Google Scholar 

  41. Eastman JW (1967) Quantitative spectrofluorimetry-the fluorescence quantum yield of quinine sulfate. Photo Chem Photo Biol 6(1):55–72

    CAS  Google Scholar 

  42. Adams MJ, Highfield JG, Kirkbright GF (1977) Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry. Anal Chem 49(12):1850–1852

    Article  CAS  Google Scholar 

  43. Meech SR, Phillips D (1983) Photophysics of some common fluorescence standards. J Photochem 23:193–217

    Article  CAS  Google Scholar 

  44. Papadopoulou A, Green RJ, Frazier A (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53:158–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author’s sincerely thanks to Department of Science and Technology (DST)-New Delhi (India) for financial assistance, Professor D.D.Dhavale, Dept. of Chemistry, University of Pune for his valuable cooperation for the spectral and analytical data. We are thankful to management of parent institute and KTHM College, Nashik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhukar N. Jachak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, S.R., Shelar, D.P., Rote, R.V. et al. A Fluorescence Study of New Angular Polycyclic Blue Light-Emitting pyrazolo[3,4-h][1,6]naphthyridine and their Interaction with Bovine Serum Albumin (BSA). J Fluoresc 21, 2037–2052 (2011). https://doi.org/10.1007/s10895-011-0915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0915-2

Keywords

Navigation