Skip to main content
Log in

Determination of Total Antioxidant Capacity by a New Spectrofluorometric Method Based on Ce(IV) Reduction: Ce(III) Fluorescence Probe for CERAC Assay

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A Ce(IV)-based reducing capacity (CERAC) assay was developed to measure the total antioxidant capacity (TAC) of foods, in which Ce(IV) would selectively oxidize antioxidant compounds but not citric acid and reducing sugars which are not classified as antioxidants. The method is based on the electron-transfer (ET) reaction between Ce(IV) ion and antioxidants in optimized acidic sulphate medium (i.e., 0.3 M H2SO4 and 0.7 M Na2SO4) and subsequent determination of the produced Ce(III) ions by a fluorometric method. The fluorescent product, Ce(III), exhibited strong fluorescence at 360 nm with an excitation wavelength of 256 nm, the fluorescence intensity being correlated to antioxidant power of the original sample. The linear concentration range for most antioxidants was quite wide, e.g., 5.0 × 10−7–1.0 × 10−5 M for quercetin. The developed procedure was successfully applied to the TAC assay of antioxidant compounds such as trolox, quercetin, gallic acid, ascorbic acid, catechin, naringin, naringenin, caffeic acid, ferulic acid, glutathione, and cysteine. The proposed method was reproducible, additive in terms of TAC values of constituents of complex mixtures, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds gave good correlations with those found by reference methods such as ABTS and CUPRAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Clarendon, Oxford

    Google Scholar 

  2. Turkmen N, Sari F, Velioglu YS (2005) The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93:713–718

    Article  CAS  Google Scholar 

  3. Berker KI, Güçlü K, Tor İ, Demirata B, Apak R (2010) Total antioxidant capacity assay using optimized ferricyanide/prussian blue method. Food Anal Methods 3:154–168

    Article  Google Scholar 

  4. Cao G, Priori RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44:1309–1315

    PubMed  CAS  Google Scholar 

  5. Rice-Evans CA (2000) Measurement of total antioxidant activity as a marker of antioxidant status in vivo: procedures and limitations. Free Radic Res 33:59–66

    Google Scholar 

  6. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  PubMed  CAS  Google Scholar 

  7. Miller NJ, Rice-Evans CA, Davies MJ, Copinathan V, Milner A (1993) A novel method for measuring antioksidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    PubMed  CAS  Google Scholar 

  8. Re R, Pellegrini N, Oroteggente A, Pannala A, Yang M, Rice-evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  PubMed  CAS  Google Scholar 

  9. Jimenez-Escrig A, Jimenez-Jimenez I, Sanchez-Moreno C, Saura-Calixto F (2000) Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picrylhydrazyl. J Sci Food Agric 80:1686–1690

    Article  CAS  Google Scholar 

  10. Folin O, Ciolcalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73:627–650

    CAS  Google Scholar 

  11. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  12. Benzie IFF, Strain JJ (1996) Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  13. Benzie IFF, Szeto YT (1999) Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 47:633–636

    Article  PubMed  CAS  Google Scholar 

  14. Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402

    Article  PubMed  CAS  Google Scholar 

  15. Ozyurt D, Demirata B, Apak R (2007) Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement. Talanta 71:1155–1165

    Article  PubMed  CAS  Google Scholar 

  16. Apak R, Güçlü K, Özyürek M, Karademir SE (2004) A novel total antioxidant capacity index for dietary polyphenols, vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRACmethod. J Agric Food Chem 52:7970–7981

    Article  PubMed  CAS  Google Scholar 

  17. Apak R, Güçlü K, Özyürek M, Karademir SE, Altun M (2005) Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: The CUPRAC method. Free Radic Res 39:949–961

    Article  PubMed  CAS  Google Scholar 

  18. Özyürek M, Çelik SE, Berker KI, Güçlü K, Tor I, Apak R (2007) Sensitivity enhancement of CUPRAC and iron(III)-phenanthroline antioxidant assays by preconcentration of colored reaction products on a weakly acidic cation exchanger. React Funct Polym 67:1478–1486

    Article  Google Scholar 

  19. Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496–1547

    Article  PubMed  CAS  Google Scholar 

  20. Llesuy S, Evelson P, Campos AM, Lissi E (2001) Methodologies for evaluation of total antioxidant activities in complex mixtures: a critical review. Biol Res 34:51–73

    Article  PubMed  CAS  Google Scholar 

  21. Magalhães LM, Segundo MA, Reis S, Lima JLFC (2006) Automatic method for determination of total antioxidant capacity using 2.2-diphenyl-1-picrylhydrazyl assay. Anal Chim Acta 558:310–318

    Article  Google Scholar 

  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  PubMed  CAS  Google Scholar 

  23. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279

    Article  PubMed  CAS  Google Scholar 

  24. Aly FA, Alarfaj NA, Alwarthan AA (2001) Flow-injection chemiluminometric analysis of some benzamides by their sensitizing effect on the cerium–sulphite reaction. Talanta 54:715–725

    Article  PubMed  CAS  Google Scholar 

  25. Cho LY, Madurro JM, Romero JR (1999) Electrooxidation of b-dicarbonyl compounds using ceric methanesulfonate as mediator: some kinetics and spectroscopic studies. J Catal 186:31–35

    Article  CAS  Google Scholar 

  26. Czappa DJ (1974) The role of acid in the cerium(IV) oxidation of carbohydrates. PhD Thesis, The Institute of Paper Chemistry, Appleton, Wisconsin

  27. Fang B, Iwasa S, Wei Y, Arai T, Kumagai M (2002) A study of the Ce(III)/Ce(IV) redox couple for redox flowbattery application. Electrochim Acta 47:3971–3976

    Article  CAS  Google Scholar 

  28. Ozyurt D, Demirata B, Apak R (2010) Modified cerium(IV)-based antioxidant capacity (CERAC) assay with selectivity over citric acid and simple sugars. J Food Compos Anal 23:282–288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Resat Apak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozyurt, D., Demirata, B. & Apak, R. Determination of Total Antioxidant Capacity by a New Spectrofluorometric Method Based on Ce(IV) Reduction: Ce(III) Fluorescence Probe for CERAC Assay. J Fluoresc 21, 2069–2076 (2011). https://doi.org/10.1007/s10895-011-0905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0905-4

Keywords

Navigation