Skip to main content
Log in

Detection of Staphylococcus aureus Carrying the Gene for Toxic Shock Syndrome Toxin 1 by Quantum-Dot-Probe Complexes

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, a high-sensitive and high-specific method to detect the toxic shock syndrome toxin-1 (TSST-1)-producing Staphylococcus aureus was developed based on quantum dot (QD) and oligonucleotide probe complexes. S. aureus carrying tst gene which is responsible for the production of TSST-1 were detected based on fluorescence resonance energy transfer (FRET) occurring between CdSe/ZnS QD donors and black hole quencher (BHQ) acceptors. QD-DNA probe was prepared by conjugating the carboxyl-modified QD and the amino-modified DNA with the EDC. Photoluminescence (PL) quenching was achieved through FRET after the addition of BHQ-DNA which was attached to tst gene probe by match sequence hybridization. The PL recovery was detected in the presence of target DNA by BHQ-DNA detached from QD-DNA probe because of the different affinities. In contrast, mismatch oligonucleotides and DNAs of other bacteria did not contribute to fluorescence intensity recovery, which exhibits the higher selectivity of the biosensor. The experimental results showed clearly that the intensity of recovered QD PL is linear to the concentration of target DNA within the range of 0.2–1.2 μM and the detection limit was 0.2 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bronner S, Monteil H, Prévost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28:183–200

    Article  PubMed  CAS  Google Scholar 

  2. Todd J, Fishaut M, Kapral F, Welch T (1978) Toxic-shock syndrome associated with phage-group-I staphylococci. Lancet 2:1116–1118

    Article  PubMed  CAS  Google Scholar 

  3. Bergdoll MS (1990) Analytical methods for Staphylococcus aureus. Int J Food Microbiol 10:91–100

    Article  PubMed  CAS  Google Scholar 

  4. Igarashi H, Fujikawa H, Shingaki M, Bergdoll MS (1986) Latex agglutination test for staphylococcal toxic shock syndrome toxin 1. J Clin Microbiol 23:509–512

    PubMed  CAS  Google Scholar 

  5. Da-Cunha-Mde L, Calsolari RA, Junior JP (2007) Detection of enterotoxin and toxic shock syndrome toxin-1 genes in Staphylococcus, with emphasis on coagulase-negative staphylococci. J Microbiol Immunol 51:381–390

    Article  Google Scholar 

  6. Mills JT, Dodel AW, Kass EH (1986) Regulation of staphylococcal toxic shock syndrome toxin-1 and total exoprotein production by magnesium ion. Infect Immun 53l:663–670

    Google Scholar 

  7. Lee ACM, Robbins RN, Bergdoll MS (1980) Isolation of specific and common antibodies to staphylococcal enterotoxins B, C1 and C2. Infect Immun 27:432–434

    Google Scholar 

  8. Wieneke AA, Gilbert RJ (1987) Comparison of four methods for the detection of staphylococcal enterotoxin in foods from outbreaks of food poisoning. Int J Food Microbiol 4:135–143

    Article  Google Scholar 

  9. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mouget C, Etienne J, Vandenesch F, Bonneville M, Lina G (2001) A highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166:669–677

    PubMed  CAS  Google Scholar 

  10. Johnson WM, Tyler SD, Ewan EP, Ashton FE, Pollard D, Rozee KR (1991) Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J Clin Microbiol 29:426–430

    PubMed  CAS  Google Scholar 

  11. Ruud HD, Rutger FN, Christel D, Nancy L, Frank RS, Frank HT, Ellen ES, Cornelis V (2005) The prevalence of the Staphylococcus aureus tst gene among community- and hospital-acquired strains and isolates from Wegener’s Granulomatosis patients. FEMS Microbiol Lett 245:185–189

    Article  Google Scholar 

  12. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed  CAS  Google Scholar 

  13. Wang L, Yan R, Huo Z, Wang ZJ, Bao J, Wang S, Peng Q, Li Y (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem 117:6208–6211

    Article  Google Scholar 

  14. Algar WR, Krull UJ (2010) Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Anal Chem 82:400–405

    Article  PubMed  CAS  Google Scholar 

  15. Sukhanova A, Nabiev I (2008) Fluorescent nanocrystal-encoded microbeads for multiplexed cancer imaging and diagnosis. Crit Rev Oncol Hematol 68:39–59

    Article  PubMed  Google Scholar 

  16. Kim YP, Oh YH, Oh E, Ko S, Han MK, Kim HS (2008) Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal Chem 80:4634–4641

    Article  PubMed  CAS  Google Scholar 

  17. Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H, Medintz IL (2009) Sensing caspase-3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828–3829

    Article  PubMed  CAS  Google Scholar 

  18. Jiang JF, Peng ZH, Deng L, Li G, Chen LL (2010) Detection of bifidobacterium species-specific 16S rDNA based on QD FRET bioprobe. J Fluoresc 20:365–369

    Article  PubMed  CAS  Google Scholar 

  19. Clapp AR, Medintz IL, Mattoussi H (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7:47–57

    Article  PubMed  CAS  Google Scholar 

  20. Kim GI, Kim KW, Oh MK, Sung YM (2009) The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology 20:175503

    Article  PubMed  Google Scholar 

  21. Dyadyusha L, Yin H, Jaiswal S, Brown T, Baumberg JJ, Booy FP, Melvin T (2005) Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem Commun 25:3201–3203

    Article  Google Scholar 

  22. Shimaoka M, Yoh M, Takarada Y, Yamamoto K, Honda T (1996) Detection of the gene for toxic shock syndrome toxin 1 in Staphylococcus aureus using enzyme-labeled oligonucleotide probes. J Med Microbiol 44:215–218

    Article  PubMed  CAS  Google Scholar 

  23. Zhang CY, Johnson LW (2006) Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows. Anal Chem 78:5532–5537

    Article  PubMed  CAS  Google Scholar 

  24. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301–310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank National Natural Science Foundation (30770570) and 863 Program of Ministry of Science and Technology (2007AA062Z403) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Chen, H., Li, H. et al. Detection of Staphylococcus aureus Carrying the Gene for Toxic Shock Syndrome Toxin 1 by Quantum-Dot-Probe Complexes. J Fluoresc 21, 1525–1530 (2011). https://doi.org/10.1007/s10895-011-0840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0840-4

Keywords

Navigation