Skip to main content
Log in

Reductive Fluorescence Quenching of the Photoexcited Free Base meso-Tetrakis (Pentafluorophenyl) Porphyrin by Amines

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Steady state and time resolved fluorescence quenching behaviors of meso-Tetrakis (pentafluorophenyl) porphyrin (H2F20TPP) in presence of different aliphatic and aromatic amines have been executed in homogeneous dichloromethane (DCM) solution. At room temperature in DCM, free base (H2F20TPP) shows fluorescence with two distinct peaks at 640 and 711 nm and natural lifetime τ f = 9.8 ns which are very similar to that of meso-tetraphenyl porphyrin (TPP). Unlike TPP, addition of both aliphatic and aromatic amines to a solution containing H2F20TPP results in an efficient decrease in fluorescence intensity without altering the shape and peak position of fluorescence emission. Upon addition of amines there was no change in optical absorption spectra of H2F20TPP. The fluorescence quenching rate constants ranged from 1 × 109 to 4 × 109 s−1, which are one order below to the diffusion control limit, and temperature dependent quenching rate constants yield the activation energies which are found to be order of 0.1 eV. Femto second transient absorption studies reveal the existence of amine cation radical and porphyrin anion radicals with very short decay time (15 ps). The fluorescence quenching reaction follows Stern–Volmer kinetics. Steady state and time-resolved data are interpreted within general kinetic scheme of Marcus semi-classical model which attributes bimolecular electron transfer process between amines and the lowest excited singlet state of H2F20TPP. Calculated internal reorganization energies are found to be in between 0.04 and 0.22 ev. Variation of electron transfer rate as function of free energy change (∆G0) points the ET reactions in the present systems are in Marcus normal region. This is the first example of reductive fluorescence quenching of free base neutral porphyrins in homogeneous organic solvent ever known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Dolphin D (ed) (1978–1979) The porphyrins, Vols. I–VII. Academic, New York

    Google Scholar 

  2. Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92(3):435–461

    Article  CAS  Google Scholar 

  3. Ward MD (1997) Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies. Chem Soc Rev 26(5):365–375

    Article  CAS  Google Scholar 

  4. Meat-Ner M, Adler AD (1975) Substituent effects in noncoplanar π systems. ms-Porphins. J Am Chem Soc 97(18):5107–5111

    Article  Google Scholar 

  5. Dalton J, Milgrom LR, Pemberton SM (1980) Tetrapyrroles. Part—1 substituent effects on porphyrin electronic spectra. J Chem Soc Perkin Tram 2(2):370–372

    Article  Google Scholar 

  6. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  7. Sundström V, Pullerits T, van Grondelle R (1999) Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103(13):2327–2346

    Article  Google Scholar 

  8. Huber RA (1989) Structural basis of light energy and electron transfer in biology (Nobel Lecture). Angew Chem Int Ed Engl 28(7):848–869

    Article  Google Scholar 

  9. Shortreed MR, Swallen SF, Shi Z-Y, Tan W, Xu Z, Devadoss C, Moore S, Kopelman RJ (1997) Directed energy transfer funnels in dendrimeric antenna supermolecules. J Phys Chem B 101(33):6318–6322

    Article  Google Scholar 

  10. Seth J, Palaniappan V, Johnson TE, Prathapan S, Lindsey JS, BoÁcian DF (1994) Investigation of electronic communication in multi-porphyrin light-harvesting arrays. J Am Chem Soc 116(23):10578–10592

    Article  CAS  Google Scholar 

  11. Li FR, Yang SI, Ciringh YZ, Seth J, Martin CH, Singh DL, Kim DH, Birge RR, Bocian DF, Holten D, Lindsey JS (1998) Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments. J Am Chem Soc 120(39):10001–10017

    Article  CAS  Google Scholar 

  12. Kurreck H, Huber M (1995) Model reactions for photosynthesis—photoinduced charge and energy transfer between covalently linked porphyrin and quinone units. Angew Chem 34(8):849–866

    Article  CAS  Google Scholar 

  13. Hu YZ, Tsukiji S, Shinkai S, Oishi S, Hamachi I (2000) Construction of artificial photosynthetic reaction centers on a protein surface: vectorial, multistep, and proton-coupled electron transfer for long-lived charge separation. J Am Chem Soc 122(2):241–253

    Article  CAS  Google Scholar 

  14. Lukas AS, Miller SE, Wasielewski MR (2000) Femtosecond optical switching of electron transport direction in branched donor–acceptor arrays. J Phys Chem B 104(5):931–940

    Article  CAS  Google Scholar 

  15. Calvin M (1978) Simulating photosynthetic quantum conversion. Acc Chem Res 11(10):369–374

    Article  CAS  Google Scholar 

  16. Pileni MP, Graetzel M (1980) Zinc porphyrin sensitized reduction of simple and functional quinones in micellar systems. J Phys Chem 84(14):1822–1825

    Article  CAS  Google Scholar 

  17. Beddard GS, Carlin S, Harris L, Porter G, Tredwell C (1978) Quenching of chlorophyll fluorescence by Nitrobenzene. Photochem Photobiol 27(4):433–438

    Article  CAS  Google Scholar 

  18. Harriman A, Hosie RJ (1981) Fluorescence quenching effect of substituted tetraphenylporphyrins. J Photochem 15:163–167

    Article  CAS  Google Scholar 

  19. Winkelman J (1962) The distribution of tetraphenylporphinesulfonate in the tumor-bearing rat. Cancer Res 22(5):589–596

    CAS  PubMed  Google Scholar 

  20. Pratviel G, Pitie M, Bernadou J, Meunier B (1991) Mechanism of DNa cleavage by cationic manganese porphyrins: hydroxylations at the 1′- Carbon and 5′-carbon atoms of deoxyriboses as initial damages. Nucleic Acid Res 19(22):6283–6288

    Article  CAS  PubMed  Google Scholar 

  21. Hartley JA, Forrow SM, Souhami RL, Reszka K, Lown JW (1990) Photosensitization of human leukemic cells by anthracenedione antitumor agents. Cancer Res 50(6):1936–1940

    CAS  PubMed  Google Scholar 

  22. Livingston R, Ke C-L (1950) Quenching of the fluorescence of chlorophyll a solutions. J Am Chem Soc 72(2):909–915

    Article  CAS  Google Scholar 

  23. Baird JK, Escott SP (1981) On departures from the Stern–Volmer law for fluorescence quenching in liquids. J Chem Phys 74(12):6993

    Article  CAS  Google Scholar 

  24. Gouterman M, Stevenson PE (1962) Porphyrin charge-transfer complexes with sym-trinitrobenzene. J Chem Phys 37(10):2266

    Article  CAS  Google Scholar 

  25. Kano K, Sato T, Yamada S, Ogawa T (1983) Fluorescence quenching of water-soluble porphyrins. A novel fluorescence quenching of anionic porphyrin by anionic anthraquinone. J Phys Chem 87(4):566–569

    Article  CAS  Google Scholar 

  26. Amouyal E (1997) In: Chanon M (ed) Homogeneous photocatalysis. Wiley, New York

    Google Scholar 

  27. Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes. Academic, New York

    Google Scholar 

  28. Knör G, Vogler A (1994) Photochemistry and photophysics of antimony(III) hyper porphyrins: activation of dioxygen induced by a reactive sp excited state. Inorg Chem 33(2):314–318

    Article  Google Scholar 

  29. Quimby DJ, Longo FR (1975) Luminescence studies on several tetraarylporphins and their zinc derivatives. J Am Chem Soc 97(18):5111–5117

    Article  CAS  Google Scholar 

  30. Shida A, Nosaka Y, Kato T (1978) J Phys Chem 82(6):695–698

    Article  CAS  Google Scholar 

  31. Ohgushi O, Li Zi C, Li Fu M, Komatsu T, Takeoka S, Tsuchida E (1999) Photoexcitation and electron transfer reactions of zinc lipidporphyrins in DMSO. J Porphyrins Phthalocyanines 3(1):53–59

    Article  CAS  Google Scholar 

  32. XU H, Yi Y, Yi-Zhou Z, Jian-Yu Z (2006) Fluorescence quenching study of zinc bisporphyrins by fulleropyrrolidines and their N-oxides. Chin J Chem 24(11):1589–1593

    Article  CAS  Google Scholar 

  33. Kuroda Y, Ito M, Sera T, Ogoshi H (1993) Controlled electron transfer between cyclodextrin-sandwiched porphyrin and quinones. J Am Chem Soc 115(15):7003–7004

    Article  CAS  Google Scholar 

  34. Myles AJ, Branda NR (2001) Controlling photoinduced electron transfer within a hydrogen-bonded porphyrin–phenoxynaphthacenequinone photochromic system. J Am Chem Soc 123(1):177–178

    Article  CAS  PubMed  Google Scholar 

  35. Jasuja R, Jameson DM, Nishijo CK, Larsen RW (1997) Singlet excited state dynamics of tetrakis(4-N-methylpyridyl)porphine associated with DNA nucleotides. J Phys Chem B 101(8):1444–1450

    Article  CAS  Google Scholar 

  36. Brun AM, Harriman A (1992) Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases. J Am Chem Soc 114(10):3656–3660

    Article  CAS  Google Scholar 

  37. Knör G (2000) Reductive fluorescence quenching of the photoexcited dihydroxy antimony(V) tetraphenylporphine cation in acetonitrile solution. Chem Phys Lett 330(3–4):383–388

    Article  Google Scholar 

  38. Hodge JA, Hill MG, Gray HB (1995) Electrochemistry of nonplanar zinc(II) tetrakis(pentafluorophenyl)porphyrins. Inorg Chem 34(4):809–812

    Article  CAS  Google Scholar 

  39. Marcus RA (1956) On the theory of oxidation–reduction reactions involving electron transfer. J Chem Phys 24(5):966

    Article  CAS  Google Scholar 

  40. Marcus RA (1957) On the theory of oxidation–reduction reactions involving electron transfer. II. Applications to data on the rates of isotopic exchange reactions. J Chem Phys 26(4):867

    Article  CAS  Google Scholar 

  41. Marcus RA (1960) Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation–reduction reactions involving electron transfer. Part 4.—A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Faraday Discuss 29:21–31

    Article  Google Scholar 

  42. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta (BBA) Rev Bioenerg 811(3):265–322

    CAS  Google Scholar 

  43. Carrigan S, Doucette S, Jones C, Marzzacco CJ, Halpern MA (1996) Fluorescence quenching of 5, 6-benzoquinoline and its conjugate acid by Cl−, Br−, SCN− and I− ions. J Photochem Photobiol A Chem 99(1):29–35

    Article  CAS  Google Scholar 

  44. Chen JM, Ho TI, Mou CY (1990) Experimental investigation of excited-state electron-transfer reaction: effects of free energy and solvent on rates. J Phys Chem 94(7):2889–2896

    Article  CAS  Google Scholar 

  45. Heitele H, Pollinger F, Haberle T, Michel-beyerle ME, Staab HA (1994) Energy gap and Temperature dependent of Photoinduced Electron transfer in Porphyrin- Quinone Cyclophanes. J Phys Chem 98(30):7402–7410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PRB gratefully acknowledge support from the DST, Government of India, Grand No SR/FTP/CS-93/2005. Authors extend their sincere thanks to Prof. N. Tamai, Department of Chemistry, Kwansei Gakuin University, Japan for allowing us to use his Femto second pump-probe set up for measuring transient absorption spectra. We also acknowledge Dr. L. Giribabu of IICT for help in measuring CV and Mrs. Lora Narayanan of Centre for Cellular and Molecular Biology, Hyderabad, India for helping in TCSPC experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakriti Ranjan Bangal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prashanthi, S., Kumar, P.H., Wang, L. et al. Reductive Fluorescence Quenching of the Photoexcited Free Base meso-Tetrakis (Pentafluorophenyl) Porphyrin by Amines. J Fluoresc 20, 571–580 (2010). https://doi.org/10.1007/s10895-009-0582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0582-8

Keywords

Navigation