Skip to main content
Log in

Mechanistic Aspects of Quantum Dot Based Probing of Cu (II) Ions: Role of Dendrimer in Sensor Efficiency

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Selective quenching of luminescence of quantum dots (QDs) by Cu2+ ions vis-à-vis other physiologically relevant cations has been reexamined. In view of the contradiction regarding the mechanism, we have attempted to show why Cu2+ ions quench QD-luminescence by taking CdS and CdTe QDs with varying surface groups. A detailed study of the solvent effect and also size dependence on the observed luminescence has been carried out. For a 13% decrease in particle diameter (4.3 nm →3.7 nm), the quenching constant increased by a factor of 20. It is established that instead of surface ligands of QDs, conduction band potential of the core facilitates the photo-induced reduction of Cu (II) to Cu (I) thereby quenching the photoluminescence. Taking the advantage of biocompatibility of dendrimer and its high affinity towards Cu2+ ions, we have followed interaction of Cu2+-PAMAM and also dendrimer with the CdTe QDs. Nanomolar concentration of PAMAM dendrimer was found to quench the luminescence of CdTe QDs. In contrast, Cu2+-PAMAM enhanced the fluorescence of CdTe QDs and the effect has been attributed to the binding of Cu2+-PAMAM complex to the CdTe particle surface. The linear portion of the enhancement plot due to Cu2+-PAMAM can be used for determination of Cu2+ ions with detection limit of 70 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018 doi:10.1126/science.281.5385.2016

    Article  PubMed  CAS  Google Scholar 

  2. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisators AP (1998) Nanocrystals as fluorescent biological labels. Science 281:2013–2016 doi:10.1126/science.281.5385.2013

    Article  PubMed  CAS  Google Scholar 

  3. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76:684–688 doi:10.1021/ac035083r

    Article  PubMed  CAS  Google Scholar 

  4. Sutherland AJ (2002) Quantum dots as luminescent probes in biological systems. Curr. Opin. Solid State Mater. Sci 6:365–370 doi:10.1016/S1359-0286(02)00081-5

    Article  CAS  Google Scholar 

  5. Msttoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-Assembly of CdSe-ZnS Quantum Dot bioconjugate using an engineered recombinant protein. J. Am. Chem. Soc. 122:12142–12150 doi:10.1021/ja002535y

    Article  Google Scholar 

  6. Wachnik A (2006) The physiological role of copper and the problems of copper nutritional deficiency. Food 32:755–765

    Google Scholar 

  7. Issarov A, Chrysochoos J (1997) Surface effects on regularities of electron transfer in CdS and CdS/CuxS colloids as studied by photoluminescence quenching. Langmuir 13:3142–3149 doi:10.1021/la960985r

    Article  Google Scholar 

  8. Moore DE, Patel K (2001) Q-CdS photoluminescence activation on Zn2+ and Cd2+ salt introduction. Langmuir 17:2541–2544 doi:10.1021/la001416t

    Article  CAS  Google Scholar 

  9. Chatterjee A, Priyam A, Bhattacharya SC, Saha A (2007) pH dependent interaction of biofunctionalized CdS nanoparticles with nucleotides and nucleobases. J. Lumin. 126:764–770 doi:10.1016/j.jlumin.2006.11.010

    Article  CAS  Google Scholar 

  10. Priyam A, Chatterjee A, Das SK, Saha A (2005) Size dependent interaction of biofunctionalized CdS nanoparticles with tyrosine at different pH. Chem. Commun. (Camb.) 32:4122–4124 doi:10.1039/b505960g

    Article  Google Scholar 

  11. Chen YF, Rosenzweig Z (2002) Luminescence CdS quantum dots as selective ion probes. Anal. Chem. 74:5132–5138 doi:10.1021/ac0258251

    Article  PubMed  CAS  Google Scholar 

  12. Liang JG, Ai XP, He ZK, Pang DW (2004) Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst (Lond.) 129:619–622 doi:10.1039/b317044f

    Article  CAS  Google Scholar 

  13. Li J, Bao D, Hong X, Li D, Li J, Bao Y, Li T (2005) Luminescent CdTe quantum dots and nanorods as metal ion probes. Colloid Surf A Physicochemical Eng Aspects. 257–258:267–271 doi:10.1016/j.colsurfa.2004.10.034

    Article  Google Scholar 

  14. Torrado A, Walkup GK, Imperiali B (1998) Exploiting polypeptide motifs for the design of selective Cu (II) ion chemosensors. J. Am. Chem. Soc. 120:609–617 doi:10.1021/ja973357k

    Article  CAS  Google Scholar 

  15. Klein G, Kaufman D, Schuch S, Raymond IL (2001) A fluorescent metal sensor based on macrocyclic chelation. Chem. Commun. (Camb.). 561–562 doi:10.1039/b100535i

  16. Prodi L, Bollrtta F, Montalti M, Zaccheroni N (2001) Dansylated polyamines as fluorescent sensors for metal ions: photophysical properties and stability of Copper(II) complexes in solution. Helv. Chim. Acta 84:608–706 doi:10.1002/1522-2675(20010321)84:3<690::AID-HLCA690>3.0.CO;2-L

    Article  Google Scholar 

  17. Tomalia DA, Becker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers—starburst-dendritic macromolecules Polymer. Polym. J. 17:117–132 doi:10.1295/polymj.17.117

    Article  CAS  Google Scholar 

  18. Tomalia DA, Naylor AN, Goddard WA III (1990) Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angew. Chem. Int. Ed. Engl. 29:138–175 doi:10.1002/anie.199001381

    Article  Google Scholar 

  19. Diallo MS, Balogh L, Shafagati A, Johnson JH Jr, Wadder WA III, Tomalia DA (1999) Poly (amidoamine) Dendrimers: a new class of high capacity chelating agents for Cu(II) Ions. Environ. Sci. Technol. 33:820–828 doi:10.1021/es980521a

    Article  CAS  Google Scholar 

  20. Pellechia PJ, Gao J, Gu Y, Ploehn J, Murphy CJ (2004) Platinum ion uptake by dendrimers: an NMR and AFM study. Inorg. Chem. 43:1421–4124 doi:10.1021/ic035127e

    Article  PubMed  CAS  Google Scholar 

  21. Tang B, Nui J, Yu C, Zhuo L, Ge J (2005) Highly luminescent water-soluble CdTe nanowires as fluorescent probe to detect copper (II). Chem. Commun. (Camb.) 4184–4186 doi:10.1039/b502978c

  22. Priyam A, Chaterjee A, Bhattacharya SC, Saha A (2007) Surface-functionalized Cadmium chalcogenide nanocrystals: a spectroscopic investigation of growth and photoluminescence. J. Cryst. Growth 304:416–426 doi:10.1016/j.jcrysgro.2007.02.026

    Article  CAS  Google Scholar 

  23. Sapra S, Sarma DD (2004) Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys. Rev. B 69:125304–125310 doi:10.1103/PhysRevB.69.125304

    Article  Google Scholar 

  24. Aich S, Raha C, Basu S (1997) Characterization of the triplet charge-transfer state of 4-amino-N-methylphthalimide in aprotic and protic media by laser flash photolysis. J. Chem. Soc., Faraday Trans. 93:2991–2996 doi:10.1039/a701291h

    Article  CAS  Google Scholar 

  25. Talapin DV, Rogach AL, Shevchenko EV, Kornowski A, Haase M, Weller H (2002) Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 124:5782–5790 doi:10.1021/ja0123599

    Article  PubMed  CAS  Google Scholar 

  26. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York, pp 52–53

    Google Scholar 

  27. Wilkinson F, Abdel-Shafi AA (1999) Mechanism of quenching of triplet states by molecular oxygen: biphenyl derivatives in different solvents. J. Phys. Chem. A 103:5425–5435 doi:10.1021/jp9907995

    Article  CAS  Google Scholar 

  28. Rajh T (1993) Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J. Phys. Chem. 97:11999–12003 doi:10.1021/j100148a026

    Article  CAS  Google Scholar 

  29. Matusumoto H, Matsunaga T, Sakata T, Mori H, Yoneyama H (1995) Size dependent fluorescence quenching of CdS nanocrystals caused by TiO2 colloids as a potential-variable quencher. Langmuir 11:4283–4287 doi:10.1021/la00011a019

    Article  Google Scholar 

  30. Haram SK, Quinin BM, Bard AJ (2001) Electrochemistry of CdS nanoparticles:a correlation between optical and electrochemical band gap. J. Am. Chem. Soc. 123:8860–8888 doi:10.1021/ja0158206

    Article  PubMed  CAS  Google Scholar 

  31. Hengglein A (1981) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor. Chem. Rev. 89:1861–18 doi:10.1021/cr00098a010

    Article  Google Scholar 

  32. Li QF, Liu SH, Zhang HY, Chen XG, Hu ZD (2001) Microdetermination of proteins by enhanced resonance light scattering spectroscopy of Acetylchlorophosphonazo. Anal. Lett. 34:1133–1134 doi:10.1081/AL-100104959

    Article  CAS  Google Scholar 

  33. Brey W (1978) Physical Chemistry and its Biological Applications. Academic, New York

    Google Scholar 

Download references

Acknoledgments

The authors wish to thank Chemical Science Division, Saha Institute of Nuclear Physics, Kolkata for help in fluorescence lifetime measurement. One of the authors (A.P.) is thankful to University Grants Commission, Govt. of India, for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Priyam, A., Bhattacharya, S.C. et al. Mechanistic Aspects of Quantum Dot Based Probing of Cu (II) Ions: Role of Dendrimer in Sensor Efficiency. J Fluoresc 19, 723–731 (2009). https://doi.org/10.1007/s10895-009-0468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0468-9

Keywords

Navigation