Skip to main content
Log in

Modeling the Relative Fluorescence Intensity Ratio of Eu(III) Complex in Different Solvents Based on QSPR Method

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The quantitative structure-property relationship approach was performed to study the relative fluorescence intensity ratio (R) of Eu(DBM)3Phen (DBM—dibenzoylmethane, Phen—1,10-phenanthroline) in 34 different solvents. The multilinear regression analysis and artificial neural networks were employed to develop linear and nonlinear models, respectively. The proposed linear model contains six descriptors, with the squared correlation coefficient r 2 = 0.955 and the standard error of estimation s = 1.02. Better predictive results were obtained from the nonlinear model, with r 2 = 0.987 and s = 0.51. The descriptors involved in the models were discussed in detail too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Sá GF, Malta OL, de Mello Donegá C, Simas AM, Longo RL, Santa-Cruz PA et al (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196:165–195, doi:10.1016/S0010-8545(99)00054-5

    Article  Google Scholar 

  2. Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102:2357–2368, doi:10.1021/cr010448y

    Article  PubMed  CAS  Google Scholar 

  3. Liang H, Zhang Q, Zheng Z, Ming H, Li Z, Xu J et al (2004) Optical amplification of Eu(DBM)3Phen-doped polymer optical fiber. Opt Lett 29:477–479, doi:10.1364/OL.29.000477

    Article  PubMed  CAS  Google Scholar 

  4. Tremblay MS, Halim M, Sames D (2007) Cocktails of Tb3+ and Eu3+ complexes: A general platform for the design of ratiometric optical probes. J Am Chem Soc 129:7570–7577

    Article  PubMed  CAS  Google Scholar 

  5. Kuriki K, Koike Y (2002) Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem Rev 102:2347–2356, doi:10.1021/cr010309g

    Article  PubMed  CAS  Google Scholar 

  6. Maas H, Currao A, Calzaferri G (2002) Encapsulated lanthanides as luminescent materials. Angew. Chem Int Ed 41:2495–2497, doi:10.1002/1521-3773(20020715)41:14<2495::AID-ANIE2495>3.0.CO;2-G

    Article  CAS  Google Scholar 

  7. Su C, Kang B, Liu H, Wang Q, Chen Z, Lu Z et al (1999) Luminescent lanthanide complexes with encapsulating polybenzimidazole tripodal ligands. Inorg Chem 38:1374–1375, doi:10.1021/ic980899+

    Article  CAS  Google Scholar 

  8. Alpha B, Lehn JM, Mathis G (1987) Energy transfer luminescence of europium(III) and terbium(III) cryptates of macrobicyclic polypyridine ligands. Angew Chem Int Ed Engl 26:266–268, doi:10.1002/anie.198702661

    Article  Google Scholar 

  9. Wang L, Wang W, Zhang W, Kang E, Huang W (2000) Synthesis and luminescence properties of novel Eu-containing copolymers consisting of Eu(III)-acrylate-β-diketonate complex monomers and methyl methacrylate. Chem Mater 12:2212–2218, doi:10.1021/cm000158i

    Article  CAS  Google Scholar 

  10. Bassett AP, Magennis SW, Glover PB, Lewis DJ, Spencer N, Parsons S et al (2004) Highly luminescent, triple- and quadruple-stranded, dinuclear Eu, Nd, and Sm(III) lanthanide complexes based on bis-diketonate ligands. J Am Chem Soc 126:9413–9424, doi:10.1021/ja048022z

    Article  PubMed  CAS  Google Scholar 

  11. Chen B, Luo Y, Liang H, Xu J, Guo F, Zhang Y et al (2007) Optical properties of a tetradentate bis(β-diketonate) europium(III) complex. Spectrochim. Acta [A], doi:10.1016/j.saa.2007.10.041

  12. Liang H, Chen B, Guo F, Guan J, Zhang Q, Li Z (2005) Luminescent polymer containing Eu chelates with different neutral ligands. Phys Status Solidi B 242:1087–1092, doi:10.1002/pssb.200402128

    Article  CAS  Google Scholar 

  13. Gordon J, Ballato J, Jin J, Smith DW (2006) Spectroscopic properties as a function of fluorine content in Eu3+: PMMA. J Polym Sci Pol Phys 44:1592–1596, doi:10.1002/polb.20818

    Article  CAS  Google Scholar 

  14. Lee CI, Lim JS, Kim SH, Suh DH (2006) Synthesis and luminescent properties of a novel Eu-containing nanoparticle. Polymer (Guildf.) 47:5253–5258, doi:10.1016/j.polymer.2006.05.054

    Article  CAS  Google Scholar 

  15. Yao XJ, Wang YW, Zhang XY, Zhang RS, Liu MC, Hu ZD et al (2002) Radial basis function neural network-based QSPR for the prediction of critical temperature. Chemometr Intell Lab 62:217–225, doi:10.1016/S0169-7439(02)00017-5

    Article  CAS  Google Scholar 

  16. Xu J, Zheng Z, Chen B, Zhang Q (2006) A linear QSPR model for prediction of maximum absorption wavelength of second-order NLO chromophores. QSAR Comb Sci 25:372–379, doi:10.1002/qsar.200530143

    Article  CAS  Google Scholar 

  17. Fitch WL, McGregor M, Katritzky AR, Lomaka A, Petrukhin R, Karelson M (2002) Prediction of ultraviolet spectral absorbance using quantitative structure-property relationships. J Chem Inf Comput Sci 42:830–840, doi:10.1021/ci010116u

    PubMed  CAS  Google Scholar 

  18. Shi J, Luan F, Zhang H, Liu M, Guo Q, Hua Z et al (2006) QSPR study of fluorescence wavelengths (λexem) based on the heuristic method and radial basis function neural networks. QSAR Comb Sci 25:147–155, doi:10.1002/qsar.200510142

    Article  CAS  Google Scholar 

  19. Nantasenamat C, Isarankura-Na-Ayudhya C, Tansila N, Naenna T, Prachayasittikul V (2007) Prediction of GFP spectral properties using artificial neural network. J Comput Chem 28:1275–1289, doi:10.1002/jcc.20656

    Article  PubMed  CAS  Google Scholar 

  20. Li M, Ni N, Wang B, Zhang Y (2008) Modeling the excitation wavelengths (λex) of boronic acids. J Mol Model 14:441–449, doi:10.1007/s00894-008-0293-0

    Article  PubMed  CAS  Google Scholar 

  21. Melby L, Rose N, Abramson E, Caris JC (1964) Synthesis and Fluorescence of Some Trivalent Lanthanide Complexes. J Am Chem Soc 86:5117–5125, doi:10.1021/ja01077a015

    Article  CAS  Google Scholar 

  22. Stucchi EB, Scapari SL, Coutodossantos MA, Leite SRA (1988) Preparation, characterization and spectroscopy of the europium diphenylphosphinate complex. J Alloy Comp 275:89–92, doi:10.1016/S0925-8388(98)00280-1

    Article  Google Scholar 

  23. Nageno Y, Takebe H, Morinaga K, Izumitani T (1994) Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses. J Non-Cryst Solids 169:228–294, doi:10.1016/0022-3093(94)90324-7

    Article  Google Scholar 

  24. Hypercube (2000) HYPERCHEM. Hypercube, Gainesville

    Google Scholar 

  25. TALETE srl (2006) DRAGON for Windows (Software for Molecular Descriptor Calculations). TALETE, Milan

    Google Scholar 

  26. Liu H, Gramatica P (2007) QSAR study of selective ligands for the thyroid hormone receptor β. Bioorg Med Chem 15:5251–5261, doi:10.1016/j.bmc.2007.05.016

    Article  PubMed  CAS  Google Scholar 

  27. Holder AJ, Yourtee DM, White DA, Glaros AG, Smith R (2003) Chain melting temperature estimation for phosphatidyl cholines by quantum mechanically derived quantitative structure property relationships. J Comput Aided Mol Des 17:223–230, doi:10.1023/A:1025382226037

    Article  PubMed  CAS  Google Scholar 

  28. Wessel MD, Jurs PC (1994) Prediction of reduced ion mobility constants from structural information using multiple linear regression analysis and computational neural networks. Anal Chem 66:2480–2487, doi:10.1021/ac00087a012

    Article  CAS  Google Scholar 

  29. Hemmer MC, Steinhauer V, Gasteiger J (1999) Deriving the 3D structure of organic molecules from their infrared spectra. Vib Spectrosc 19:151–164, doi:10.1016/S0924-2031(99)00014-4

    Article  CAS  Google Scholar 

  30. Jansson PA (1991) Neural networks: an overview. Anal Chem 63:357A–362A, doi:10.1021/ac00004a011

    Article  Google Scholar 

  31. Xu L, Ball JW, Dixon SL, Jurs PC (1994) Quantitative structure-activity relationships for toxicity of phenols using regression analysis and computational neural networks. Environ Toxicol Chem 13:941–851, doi:10.1897/1552-8618(1994)13[841:QSRFTO]2.0.CO;2

    Article  Google Scholar 

  32. Qi Y, Zhang Q, Xu L (2002) Correlation analysis of the structures and stability constants of gadolinium(III) complexes. J Chem Inf Comput Sci 42:1471–1475, doi:10.1021/ci020027x

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of Wuhan University of Science & Engineering (No. 20073208), the Natural Science Foundation of Hubei Province (No. 2007ABA075), and the Key Project of Science and Technology Research of Ministry of Education (No. 208089). The authors gratefully wish to express their thanks to the reviewers for critically reviewing the manuscript and making important suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Xiong, Q., Chen, B. et al. Modeling the Relative Fluorescence Intensity Ratio of Eu(III) Complex in Different Solvents Based on QSPR Method. J Fluoresc 19, 203–209 (2009). https://doi.org/10.1007/s10895-008-0403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0403-5

Keywords

Navigation