Skip to main content
Log in

Thioflavin T Displays Enhanced Fluorescence Selectively Inside Anionic Micelles and Mammalian Cells

  • Short Communication
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Thioflavin T (ThT) has been widely employed to detect amyloid fibrils in tissues and recently in presence of SDS micelles. However, the contribution of membranes or micelles to ThT fluorescence has never been investigated. In this paper, we show for the first time that the anionic micellar microenvironment of SDS has a profound impact on the absorption and fluorescence spectra of ThT in sharp contrast to cationic (CTAB) and neutral micelles (Triton X-100 & Tween 20). Unlike CTAB or Triton X-100 or Tween 20 micelles, formation of SDS micelles shifts the λmax for ThT absorption from 412 nm in buffer to 428 nm inside the micelle, with a 28% increase in the peak molar absorptivity and a ∼13 fold increase in ThT fluorescence (λmax = 489 nm). Extending these observations to cell plasma membranes, we show that ThT can quickly enter and appear selectively fluorescent inside mammalian cells like BHK21 and HT29, against a dark background owing to negligible fluorescence from free ThT in aqueous medium. The above results suggest that ThT can be a useful probe for live cell imaging and for selectively labeling micelles on the basis of the charge in the polar headgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

ThT:

thioflavin T

HEWL:

hen eggwhite lysozyme

PBS:

phosphate buffered saline

References

  1. Vassar PS, Culling CFA (1959) Fluorescent stains with special reference to amyloid and connective tissues. Arch Pathol 68:487–498

    PubMed  CAS  Google Scholar 

  2. Saeed SM, Fine G (1967) Thioflavin-T for amyloid detection. J Clin Pathol 47(5):588–593

    CAS  Google Scholar 

  3. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in-vitro using the fluorescent dye, thioflavin T1. Anal Biochem 177(2):244–249

    Article  PubMed  CAS  Google Scholar 

  4. LeVine H III (1993) Thioflavin T interaction with synthetic Alzheimer’s disease β amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2(3):404–410

    Article  PubMed  CAS  Google Scholar 

  5. Canete M, Villanueva A, Juarranz A, Stockert JC (1987) A study of interaction of thioflavine T with DNA: evidence for intercalation. Cell Mol Biol 33(2):191–199

    PubMed  CAS  Google Scholar 

  6. Ilanchelian M, Ramaraj R (2004) Emission of thioflavin T and its control in the presence of DNA. J Photochem Photobiol A 162(1):129–137

    Article  CAS  Google Scholar 

  7. Raj CR, Ramaraj R (1999) Influence of cyclodextrin complexation on the emission of thioflavin T and it’s off-on control. J Photochem Photobiol A 122(1):39–46

    Article  Google Scholar 

  8. Voropai ES, Samtsov MP, Kaplevskii KN, Maskevich AA, Stepuro VI, Povarova OI, Kuznetsova IM, Turoverov KK, Fink AL, Uverskii VN (2003) Spectral properties of thioflavin T and it’s complexes with amyloid fibrils. J Appl Spectrosc 70(6):868–874

    Article  CAS  Google Scholar 

  9. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Turoverov KK, Kuznetsova IM (2007) Computational study of thioflavin T torsional relaxation in the excited state. J Phys Chem A 111(22):4829–4835

    Article  PubMed  CAS  Google Scholar 

  10. Friedhoff P, Schneider A, Mandelkow EM, Mandelkow E (1998) Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 37(28):10223–10230

    Article  PubMed  CAS  Google Scholar 

  11. Maskevich AA, Stsiapura VI, Kuzmitsky VA, Kuznetsova IM, Povarova OI, Uversky VN, Turoverov KK (2007) Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J Proteome Res 6(4):1392–1401

    Article  PubMed  CAS  Google Scholar 

  12. Kelenyi G (1967) On the histochemistry of azo group-free thiazole dyes. J Histochem Cytochem 15(3):172–180

    PubMed  CAS  Google Scholar 

  13. Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, Goto Y, Gejyo F, Naiki H (2004) Low concentrations of sodium dodecylsulfate induce the extension of β 2 -microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43(34):11075–11082

    Article  PubMed  CAS  Google Scholar 

  14. Rangachari V, Reed DK, Moore BD, Rosenberry TL (2006) Secondary structure and interfacial aggregation of a amyloid-β 1(–40) on sodium dodecylsulfate micelles. Biochemistry 45(28):8639–8648

    Article  PubMed  CAS  Google Scholar 

  15. McAllister C, Karymov MA, Kawano Y, Lushnikov AY, Mikheikin A, Uversky VN, Lyubchenko YL (2005) Protein interactions and misfolding analyzed by AFM force spectroscopy. J Mol Biol 354(5):1028–1042

    Article  PubMed  CAS  Google Scholar 

  16. Homchaudhuri L, Kumar S, Swaminathan R (2006) Slow aggregation of lysozyme in alkaline pH monitored in real time employing the fluorescence anisotropy of covalently labeled dansyl probe. FEBS Lett 580(8):2097–2101

    Article  PubMed  CAS  Google Scholar 

  17. Wall J, Murphy CL, Solomon A (1999) In vitro immunoglobulin light chain fibrillogenesis. Methods Enzymol 309:204–217

    Article  PubMed  CAS  Google Scholar 

  18. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in study of micellar systems. J Am Chem Soc 99(7):2039–2044

    Article  CAS  Google Scholar 

  19. Maiti NC, Mazumdar S, Periasamy N (1998) J- and H-aggregates of porphyrin-surfactant complexes: time-resolved fluorescence and other spectroscopic studies. J Phys Chem B 102(9):1528–1538

    Article  CAS  Google Scholar 

  20. Krishnamoorthy G, Dogra SK (2000) Effect of micelles on the prototropic equilibrium of 2-(4'-N,N-dimethylaminophenyl) pyrido [3,4-d] imidazole. Phys Chem Chem Phys 2:2521–2528

    Article  Google Scholar 

  21. Maiti NC, Mazumdar S, Periasamy N (1996) Controlled J-aggregation of porphyrins by cationic surfactants. Curr Sci 70(11):997–999

    CAS  Google Scholar 

  22. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151(3):229–238

    Article  PubMed  CAS  Google Scholar 

  23. Knowles TP, Fitzpatric AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, Welland ME (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318(5858):1900–1903

    Article  PubMed  CAS  Google Scholar 

  24. Sage BH Jr, O’Connell JP, Mercolino TJ (1983) A rapid, vital staining procedure for flow cytometric analysis of human reticulocytes. Cytometry 4(3):222–227

    Article  PubMed  Google Scholar 

  25. Darghal N, Garnier-Suillerot A, Salerno M (2006) Mechanism of thioflavin T accumulation inside cells overexpressing p-glycoprotein or multidrug resistance-associated protein: role of lipophilicity and positive charge. Biochem Biophys Res Commun 343(2):623–629

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Vijay Kumar Ravi for the AFM images and Mr. P. Gopinath for assisting in the recording of the fluorescence images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajaram Swaminathan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 51.8 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Singh, A.K., Krishnamoorthy, G. et al. Thioflavin T Displays Enhanced Fluorescence Selectively Inside Anionic Micelles and Mammalian Cells. J Fluoresc 18, 1199–1205 (2008). https://doi.org/10.1007/s10895-008-0378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0378-2

Keywords

Navigation