Skip to main content
Log in

Cellular Uptake of Fluorescent Labelled Biotin–Streptavidin Microspheres

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Amino functionalized, cross-linked, polystyrene microspheres were covalently loaded with streptavidin to which was coupled fluorescently labeled biotin and biotinylated-tagged DNA. These biotin–streptavidin microsphere conjugates were then successfully delivered into cells. The application of the streptavidin–biotin technology to these microspheres allows the effective delivery of any biotinylated material into intact mammalian cells, without the need for delicate procedures such as micro-injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Diaz-Mochon JJ, Bialy L, Watson J, Sanchez-Martin RM, Bradley M (2005) Synthesis and cellular uptake of cell delivering PNA-peptide conjugates. Chem Commun 26:3316–3318

    Article  CAS  Google Scholar 

  2. Snyder EL, Dowdy SF (2004) Cell penetrating peptides in drug delivery. Pharm Res 21:389–393

    Article  PubMed  CAS  Google Scholar 

  3. Järver P, Langel U (2004) The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today 9:395–402

    Article  PubMed  CAS  Google Scholar 

  4. Peretto I, Sanchez-Martin RM, Wang X, Ellard J, Mittoo S, Bradley M (2003) Cell penetrable peptoid carrier vehicles: synthesis and evaluation. Chem Commun 18:2312–2313

    Article  CAS  Google Scholar 

  5. Yingyongnarongkul B, Howarth M, Elliott T, Bradley M (2004) Solid-phase synthesis of 89 polyamine-based cationic lipids for DNA delivery to mammalian cells. Chem Eur J 10:463–473

    Article  CAS  Google Scholar 

  6. Simard P, Leroux JC, Allen C, Meyer O (2007) Liposomes for drug delivery. In: Domb AJ, Tabata Y, Ravi Kumar MNV, Farber S (eds) Nanoparticles for pharmaceutical applications. American Scientific, California, USA, pp 1–62

    Google Scholar 

  7. Gingras M, Raimundo JM, Chabre YM (2007) Cleavable dendrimers. Angew Chem Int Ed 46:1010–1017

    Article  CAS  Google Scholar 

  8. Dufes C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    Article  PubMed  CAS  Google Scholar 

  9. Wong Shi Kam N et al (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Article  CAS  Google Scholar 

  10. Zhu H, McShane MJ (2005) Loading of hydrophobic materials into polymer particles: implications for fluorescent nanosensors and drug delivery. J Am Chem Soc 127:13448–13449

    Article  PubMed  CAS  Google Scholar 

  11. Buck SM, Xu H, Brasuel M, Philbert MA, Kopelman R (2004) Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells. Talanta 63:41–59

    Article  CAS  PubMed  Google Scholar 

  12. Steinkamp JA, Wilson JS, Saunders GC, Stewart CC (1982) Phagocytosis: flow cytometric quantitation with fluorescent microspheres. Science 215:64–66

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez-Martin RM, Muzerelle M, Chitkul N, How SE, Mittoo S, Bradley M (2005) Bead-based cellular analysis, sorting and multiplexing. ChemBioChem 6:1341–1345

    Article  PubMed  CAS  Google Scholar 

  14. Sanchez-Martin RM, Cuttle M, Mittoo S, Bradley M (2006) Microsphere-based real-time calcium sensing. Angew Chem Int Ed 45:5472–5474

    Article  CAS  Google Scholar 

  15. Bradley M, Alexander L, Duncan K, Chennaoui M, Jones AC, Sanchez-Martin RM (2008) pH sensing in living cells using fluorescent microspheres. Bioorg Med Chem Lett 18:313–317

    Google Scholar 

  16. Pardridge WM (2007) shRNA and siRNA delivery to brain. Adv Drug Deliver Rev 59:141–152

    Article  CAS  Google Scholar 

  17. Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129(45):13987–13996

    Article  PubMed  CAS  Google Scholar 

  18. Niemeyer CM, Adler M, Wacker R (2007) Detecting antigens by quantitative immuno-PCR. Nature Protocols 2(8):1918–1930

    Article  PubMed  CAS  Google Scholar 

  19. Diamandis EP, Christopoulos TK (1991) The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 37:625–636

    PubMed  CAS  Google Scholar 

  20. Green NM (1990) Avidin and streptavidin. Methods Enzymol 184:51–67

    Article  PubMed  CAS  Google Scholar 

  21. Wu CW, Lee JG, Lee WC (1998) Protein and enzyme immobilization on non-porous microspheres of polystyrene. Biotechnol Appl Biochem 27:225–230

    CAS  Google Scholar 

  22. Kada G, Falk H, Gruber HJ (1999) Accurate measurement of avidin and streptavidin in crude biofluids with a new, optimized biotin-fluorescein conjugate. Biochim Biophys Acta 1427:33–43

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the EPSRC. R.M.S.-M. thanks the Royal Society for a Dorothy Hodgkin Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Sanchez-Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, M., Alexander, L. & Sanchez-Martin, R.M. Cellular Uptake of Fluorescent Labelled Biotin–Streptavidin Microspheres. J Fluoresc 18, 733–739 (2008). https://doi.org/10.1007/s10895-008-0334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0334-1

Keywords

Navigation